Table 9 Quantitative analysis of K- fold cross validation of spectrofusionnet on ML classifiers.

From: SpectroFusionNet a CNN approach utilizing spectrogram fusion for electric guitar play recognition

Classifier

\(\:{F}_{late,concat}\)

\(\:{F}_{late,wavg}\)

\(\:{F}_{late,max}\)

Mean Accuracy (%)

Mean F1-Score (%)

Mean Accuracy (%)

Mean F1-Score (%)

Mean Accuracy (%)

Mean F1-Score (%)

Random forest

96.55

(96.55, 94.25, 95.40, 98.85, 97.70)

95.12

(94.50, 93.20, 96.00, 97.80, 98.10)

97.70

(98.85, 97.70, 98.85, 95.40, 97.70)

97.68

(98.83, 97.69, 98.85, 95.36, 97.66)

97.83

(100, 96.39, 96.39, 97.59, 98.78)

97.83

(100, 95.15, 97.58, 97.61, 98.79)

SVM

95.10

(91.26, 92.40, 96.09, 97.14, 98.00)

94.30

(90.40, 91.50, 95.00, 96.80, 97.80)

96.09

(96.55, 96.55, 95.40, 95.40, 96.55)

96.07

(96.53, 96.61, 95.38, 95.37, 96.49)

97.34

(100, 93.98, 98.80, 96.39, 97.56)

97.33

(100, 93.97, 98.80, 96.37, 97.52)

KNN

90.10

(86.67, 87.50, 90.80, 92.30, 93.24)

89.20

(85.60, 86.80, 89.30, 91.10, 92.30)

90.80

(95.40, 95.40, 85.06, 87.36, 90.80)

90.77

(95.40, 95.42, 85.03, 87.28, 90.73)

91.07

(98.80, 89.16, 81.93, 90.36, 95.12)

91.01

(98.83, 89.16, 81.57, 90.59, 94.89)

LMT

96.92

(95.40, 96.00, 97.47, 98.20, 99.00)

96.10

(94.80, 95.40, 96.70, 97.90, 98.50)

97.47

(98.85, 100.00, 95.40, 95.40, 97.70)

97.45

(98.83, 100.00, 95.38, 95.36, 97.66)

98.79

(100, 97.59, 100, 98.80, 97.56)

98.78

(100, 97.60, 100, 98.79, 97.52)

Naive Bayes

79.20

(79.08, 77.50, 78.39, 80.00, 81.20)

77.80

(76.50, 75.60, 77.10, 78.90, 79.90)

78.39

(77.01, 78.16, 74.71, 81.61, 80.46)

78.32

(77.57, 77.84, 74.11, 81.52, 80.57)

67.65

(73.49, 57.83, 63.86, 67.47, 75.61)

67.42

(71.39, 58.54, 64.60, 66.69, 75.91)

Linear SVM

98.02

(96.55, 97.20, 98.16, 99.00, 99.04)

97.40

(96.10, 97.00, 97.80, 98.50, 99.00)

98.16

(98.85, 100.00, 97.70, 96.55, 97.70)

98.15

(98.83, 100.00, 97.69, 96.55, 97.66)

98.79

(100, 96.39, 100, 100, 97.56)

98.79

(100, 96.36, 100, 100, 97.59)

MLP

97.50

(96.55, 96.80, 97.70, 98.50, 99.00)

96.80

(96.10, 96.50, 97.20, 98.10, 98.90)

97.70

(98.85, 100.00, 95.40, 96.55, 97.70)

97.68

(98.83, 100.00, 95.37, 96.55, 97.66)

97.34

(100, 93.98, 98.80, 97.59, 96.34)

97.12

(98.83, 97.60, 96.44, 96.39, 96.35)

Decision tree

80.93

(78.39, 79.50, 80.00, 82.10, 82.56)

79.80

(77.50, 78.20, 79.00, 81.00, 82.20)

80.00

(83.91, 80.46, 80.46, 77.01, 78.16)

79.91

(83.53, 80.85, 80.05, 76.81, 78.33)

83.58

(79.52, 86.75, 87.95, 78.31, 85.37)

81.60

(78.74, 83.81, 80.46, 80.70, 84.34)

Gradient boosting

92.60

(91.26, 90.50, 91.72, 93.40, 94.40)

91.90

(90.00, 89.50, 91.30, 92.70, 93.80)

91.72

(93.10, 93.10, 93.10, 89.66, 89.66)

91.69

(92.96, 93.17, 93.00, 89.75, 89.54)

90.35

(96.39, 83.13, 84.34, 91.57, 96.34)

89.80

(96.31, 83.28, 84.22, 91.24, 93.95)

AdaBoost

74.88

(70.34, 72.50, 73.56, 76.20, 76.98)

73.40

(69.80, 71.20, 72.50, 74.80, 75.90)

73.56

(81.61, 75.86, 67.82, 62.07, 80.46)

72.97

(81.90, 70.83, 69.68, 61.31, 81.13)

75.37

(77.11, 74.70, 69.88, 75.90, 79.27)

74.52

(77.28, 75.18, 67.51, 75.33, 77.34)