Table 7 Comparative analysis of models based on complexity, robustness, and performance.
Metric | Proposed (MobileNetV3 + CTPOA) | DT [35] | PC-IDS [26] | FIF [27] | AI-CRM [34] |
|---|---|---|---|---|---|
Computational Complexity (GFLOPs) | 1.8 | 3.2 | 2.9 | 3.5 | 3.8 |
Model Parameters (Million) | 5.4M | 12.1 M | 9.8 M | 11.5 M | 13.2 M |
Inference Time (ms per sample) | 4.5 ms | 8.3 ms | 7.1 ms | 9.2 ms | 10.5 ms |
Energy Consumption (mJ per sample) | 6.2 mJ | 11.5 mJ | 9.8 mJ | 12.4 mJ | 14.1 mJ |
Accuracy Drop (%) under Adversarial Attack | 1.80% | 5.20% | 4.70% | 5.50% | 6.10% |
Encryption Time (ms) | 4.5 ms | 5.8 ms | 5.1 ms | 5.9 ms | 6.8 ms |
Decryption Time (ms) | 3.3 ms | 5.4 ms | 8.2 ms | 9.0 ms | 6.0 ms |
False Positive Rate (FPR%) | 0.25% | 2.10% | 1.80% | 2.40% | 3.00% |
Model Size (MB) | 14 MB | 25 MB | 22 MB | 28 MB | 32 MB |
Scalability (Training Time per Epoch in Seconds) | 42 s | 58 s | 54 s | 61 s | 72 s |