Table 3 Performance comparison of the proposed passive KB-CMFD method with state-of-the-art CMFD methods on publicly available datasets (best performances are in bold).
Dataset | CMFD methods | P | R | F-measure |
|---|---|---|---|---|
CoMoFoD | Clustered-based18 | 0.7980 | 0.7490 | 0.7727 |
SIFT41 | 0.7000 | 0.8750 | 0.7778 | |
SIFT-IMC-RG43 | 0.7019 | 0.8461 | 0.7673 | |
Passive framework44 | 0.9660 | 0.9800 | 0.9729 | |
FMT45 | 0.8290 | 0.7851 | 0.8064 | |
SURF46 | 0.6160 | 0.7098 | 0.6596 | |
ORB47 | 0.7692 | 0.8000 | 0.7843 | |
KAZE47 | 0.8800 | 0.8461 | 0.8627 | |
AKAZE47 | 0.8889 | 0.9600 | 0.9231 | |
DL-CNN48 | 0.9794 | 0.9520 | 0.9382 | |
Proposed passive KB-CMFD method | 0.9962 | 0.9597 | 0.9776 | |
MICC-F220 | Clustered-based18 | 0.9050 | 0.9550 | 0.9293 |
FMT45 | 1.0000 | 0.5940 | 0.7453 | |
SURF46 | 0.8160 | 0.9273 | 0.8681 | |
Passive framework44 | 0.9835 | 0.9682 | 0.9757 | |
Level-2 clustering49 | 0.9576 | 0.9431 | 0.9503 | |
BB-CMFD50 | 0.9251 | 0.9695 | 0.9468 | |
ResNet5051 | 0.8800 | 0.8400 | 0.08400 | |
Proposed passive KB-CMFD method | 0.9891 | 0.9789 | 0.9839 | |
Defecto MSCOCO (synthetic) | D2PRL52 | 0.9470 | 0.7670 | 0.8320 |
Serial network retrain53 | 0.8560 | 0.4980 | 0.5830 | |
DOA-GAN54 | 0.6560 | 0.2690 | 0.3290 | |
BusterNet retrain55 | 0.6710 | 0.5040 | 0.5440 | |
Proposed passive KB-CMFD method | 0.9560 | 0.9147 | 0.9349 |