Table 6 Comparative analysis of CDMFL-AIDCNN method under the UNSW-NB15 dataset25,26, and27.
UNSW-NB15 dataset | ||||
|---|---|---|---|---|
Model | \(\:\text{Accu}_{\text{y}}\) | \(\:\text{Prec}_{\text{n}}\) | \(\:\text{Reca}_{\text{l}}\) | \(\:{\text{F}}_{\text{measure}}\) |
Decision Tree | 89.52 | 80.03 | 83.11 | 88.94 |
Random Forest | 90.98 | 81.29 | 79.57 | 78.51 |
DT-XGB Classifier | 95.79 | 90.71 | 79.18 | 84.60 |
Random Forest-FS | 88.73 | 85.33 | 90.54 | 82.53 |
Logistic Regression | 89.99 | 77.56 | 81.74 | 86.50 |
KNN + XGBoost | 97.31 | 91.14 | 78.00 | 89.66 |
SVM Method | 95.29 | 84.00 | 92.34 | 91.94 |
CDMFL-AIDCNN | 98.64 | 93.82 | 93.52 | 93.65 |