Table 1 Comparison between the proposed converter and other topologies.
Converter | Number of | Voltage gain | Normalized Voltage Stress of Switches (VS∕VO) | Normalized Voltage Stress of Diodes (VD∕VO) | Max Eff. (%) | CG | SS | Input CR | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | D | C | L | CI | T | ||||||||
[1] | 1 | 5 | 5 | 1 | 1 | 13 | \(\frac{{n(3D+2)+(2 - D)}}{{2{{(1 - D)}^2}}}\) | \(\frac{{2+D(n - 1)}}{{n(3D+2)+(2 - D)}}\) | \(\frac{{2n}}{{n(3D+2)+(2 - D)}}\) | 92.96 | ✓ | ×D ×S | Low |
[2] | 1 | 4 | 2 | 1 | 1 | 9 | \(\frac{{1+nD}}{{{{(1 - D)}^2}}}\) | \(\frac{1}{{1+nD}}\) | \(\frac{{(2 - D+nD)}}{{1+nD}}\) | 88.11 | ✓ | ×D ×S | – |
[3] | 1 | 3 | 4 | 1 | 1 | 10 | \(\frac{{1+n}}{{1 - D}}\) | \(\frac{1}{{1+n}}\) | \(\frac{1}{{1+n}}\) | 95.01 | ✓ | ✓D ×S | Low |
[4] | 2 | 5 | 5 | 1 | 1 | 14 | \(\frac{{2+2n+nD(1 - D)}}{{{{(1 - D)}^2}}}\) | \(\frac{1}{{2+2n+nD(1 - D)}}\) | \(\frac{{(1+2n - nD)}}{{2+2n+nD(1 - D)}}\) | 94.2 | ✓ | ×D ×S | Low |
[5] | 1 | 7 | 5 | 1 | 1 | 15 | \(\frac{{1+n}}{{{{(1 - D)}^2}}}\) | \(\frac{1}{2}\) | \(\frac{{1+nD}}{{(n+1)}}\) | ─ | ✓ | ×D ×S | Low |
[6] | 1 | 5 | 4 | 1 | 1 | 12 | \(\frac{{n+2}}{{{{(1 - D)}^2}}}\) | \(\frac{1}{{n+2}}\) | \(\frac{{1+n}}{{2+n}}\) | ≤ 89 | ✓ | ×D ×S | Low |
[8] | 2 | 8 | 8 | 0 | 2 | 20 | \(\frac{{5 - 2nD+4n - D}}{{(1 - D)}}\) | \(\frac{1}{{(5 - {n_1}D+2{n_1} - D - {n_2}D+2{n_2})}}\) | \(\frac{{1+n}}{{(5 - {n_1}D+2{n_1} - D - {n_2}D+2{n_2})}}\) | 94.6 | × | ✓D ×S | Low |
[10] | 4 | 2 | 4 | 2 | 1 | 13 | \(\frac{{2(n+2)}}{{(1 - D)}}\) | \(\frac{1}{{2(n+2)}}\) | \(\frac{{n+1}}{{(n+2)}}\) | 94.4 | ✓ | ✓D ✓S | Low |
[15] | 2 | 4 | 4 | 1 | 1 | 12 | \(\frac{{1+D+2n(1 - D)}}{{{{(1 - D)}^2}}}\) | \(\frac{{(1+D)}}{{1+D+2n(1 - D)}}\) | \(\frac{{2n}}{{1+D+2n(1 - D)}}\) | 96.1 | ✓ | ✓D ✓S | Low |
[18] | 3 | 5 | 4 | 0 | 2 | 14 | \(\frac{{2n+2}}{{1 - D}}\) | \(\frac{1}{{2n+2}}\) | \(\frac{2}{{2n+2}}\) | 96 | × | ✓D ✓S | Low |
[20] | 1 | 5 | 4 | 0 | 2 | 12 | \(\frac{{n(D - {D^2})+nD+1}}{{{{(1 - D)}^2}}}\) | \(\frac{1}{{n(D - {D^2})+nD+1}}\) | \(\frac{n}{{n(D - {D^2})+nD+1}}\) | 90.5 | ✓ | ×D ×S | High > 80% |
[24] | 1 | 8 | 8 | 0 | 1 | 18 | \(\frac{{4+n(2 - D) - D}}{{1 - D}}\) | \(\frac{1}{{4+n(2 - D) - D}}\) | \(\frac{{n(2 - D) - D}}{{4+n(2 - D) - D}}\) | 92.7 | ✓ | ×D ×S | Med 55% |
[26] | 2 | 5 | 5 | 1 | 1 | 14 | \(\frac{{3+2n - D(3+n - D)}}{{{{\left( {1 - D} \right)}^2}}}\) | \(\frac{1}{{3+2n - D(3+n - D)}}\) | \(\frac{{n(2 - D)}}{{3+2n - D(3+n - D)}}\) | ≤ 94 | ✓ | ×D ×S | High > 80% |
Prop. | 2 | 5 | 5 | 1 | 1 | 14 | \(\frac{{{D^2}(n+1) - D(4n+3)+4n+3}}{{{{(1 - D)}^2}}}\) | \(\begin{gathered} {S_1}:\frac{{(1 - D)}}{{{D^2}\left[ {2n+2 - k(n+1)} \right]+D\left( {2k+2nk - 6n - 5} \right)+4n+3}} \hfill \\ {S_2}:\frac{{{{(1 - D)}^2} - kD(D - 2)}}{{{D^2}\left[ {2n+2 - k(n+1)} \right]+D\left( {2k+2nk - 6n - 5} \right)+4n+3}} \hfill \\ \end{gathered}\) | \(\frac{{nD - {n^2}D+2{n^2} - 2n}}{{M(1 - D)(n - nD+D - 1)}}\) | 94.51 | ✓ | ✓D ✓S | Med 50% |