Table 3 Prediction errors of tourist flow by different models at mount Lu.

From: Combined CNN-BiLSTM-Att tourism flow prediction based on VMD-MWPE decomposition reconstruction

Model

3 days

7 days

15 days

MAPE (%)

BRMSE (%)

R2

MAPE (%)

BRMSE (%)

R2

MAPE (%)

BRMSE (%)

R2

ARIMA

10.78

13.49

0.829

12.18

12.84

0.743

18.69

18.84

0.628

SVM

13.89

15.27

0.761

15.91

15.15

0.665

23.74

25.66

0.513

DT

3.48

3.76

0.946

5.53

6.76

0.891

13.42

14.21

0.694

RF

3.96

4.15

0.937

5.26

6.07

0.896

12.63

13.93

0.729

DNN

4.19

4.27

0.932

4.86

5.01

0.907

10.66

11.34

0.816

LSTM

3.72

3.78

0.942

4.25

4.42

0.929

9.43

10.06

0.834

XGBoost

3.85

3.81

0.949

4.42

4.59

0.897

9.71

10.27

0.823

BiLSTM

3.58

3.67

0.955

3.94

4.02

0.945

8.68

9.13

0.847

CNN-LSTM

3.23

3.29

0.963

3.53

3.66

0.951

7.54

8.28

0.856

CNN-BiLSTM

2.95

2.92

0.971

3.28

3.41

0.962

6.95

7.62

0.868

CNN-BiLSTM-Att

2.73

2.71

0.988

3.03

3.12

0.979

6.33

6.82

0.875

  1. Significant values are in bold.