Table 4 Prediction error comparison of tourist flow by different models in Jiuzhaigou.

From: Combined CNN-BiLSTM-Att tourism flow prediction based on VMD-MWPE decomposition reconstruction

Model

3 days

7 days

15 days

MAPE (%)

BRMSE (%)

R2

MAPE (%)

BRMSE (%)

R2

MAPE (%)

BRMSE (%)

R2

ARIMA

13.84

20.64

0.727

22.34

37.72

0.614

35.99

77.20

0.498

SVM

26.16

33.64

0.523

38.74

49.02

0.428

51.81

63.64

0.335

DT

3.11

4.68

0.986

5.17

10.09

0.888

9.17

24.35

0.436

RF

4.11

6.93

0.969

4.60

8.15

0.926

7.76

18.60

0.62

DNN

2.19

3.23

0.993

5.46

11.01

0.866

6.85

15.72

0.729

LSTM

2.67

3.51

0.991

4.83

8.46

9.03

6.24

13.86

0.772

XGBoost

2.91

5.02

0.984

4.30

9.05

0.91

7.50

17.79

0.653

BiLSTM

2.24

3.37

0.993

4.28

8.86

0.945

6.36

14.21

0.758

CNN-LSTM

2.45

3.56

0.992

4.02

8.24

0.934

6.18

13.49

0.793

CNN-BiLSTM

2.16

3.37

0.994

3.89

7.92

0.952

5.94

11.43

0.831

CNN-BiLSTM-Att

1.93

2.67

0.996

3.49

7.19

0.963

5.68

10.25

0.862

  1. Significant values are in bold.