Table 3 Numeric comparison between different methods on SS-OCT.

From: Self-supervised model-informed deep learning for low-SNR SS-OCT domain transformation

  

CNR

PSNR

MSR

TP

SSIM

SS-OCT Dataset

B2U

4.341

21.853

18.631

0.998

0.523

N2S

4.627

22.249

15.242

0.795

0.953

N2N

5.043

23.037

27.231

0.985

0.985

MimicNet

18.104

32.079

57.864

0.494

0.274

BM3D

20.447

35.985

75.496

0.362

0.376

BM4D

20.429

35.87

65.965

0.348

0.327

TGVD

20.289

34.317

43.791

0.441

0.315

GT-SGMM

8.167

24.109

6.076

0.455

0.741

WNNM

13.245

32.581

104.7

0.490

0.661

DARG

22.239

37.212

75.971

0.422

0.194

SDNet

28.139

36.942

40.971

0.513

0.631

Original

4.622

23.993

40.676

1.0

1.0