Table 3 Comparison of experimental outcomes among various networks on the SegPC-2021 dataset.

From: Medical image segmentation model based on local enhancement driven global optimization

Methods

DSC\(\uparrow\)

HD\(\downarrow\)

Cytoplasm

Nucleus

U-Net4

80.54

35.89

80.76

80.30

R50 U-Net7

79.21

33.26

78.65

79.78

UNet++9

75.05

32.33

72.56

77.55

UNet3+10

77.31

34.60

76.03

78.59

R50 Att-UNet7

80.15

31.74

79.98

80.32

CBAM36

80.04

33.26

79.49

80.59

SENet37

79.00

35.31

78.43

79.57

SKNet38

80.52

30.66

79.95

81.08

Att-UNet8

80.40

36.04

79.55

81.25

TransUNet19

79.69

33.95

78.68

80.68

MT-UNet21

80.13

35.42

79.96

80.31

TransClaw23

79.77

34.45

79.04

80.50

SwinUNet32

78.22

35.24

77.32

79.11

TransDeeplab41

78.81

33.02

77.38

80.24

LEGO-Net(Ours)

83.57

29.36

82.31

84.84