Table 4 Comparison of experimental outcomes among various networks on the ISIC2017 dataset.

From: Medical image segmentation model based on local enhancement driven global optimization

Methods

DSC\(\uparrow\)

HD\(\downarrow\)

Jaccard\(\uparrow\)

Precision\(\uparrow\)

Recall\(\uparrow\)

U-Net4

83.06

10.35

74.15

94.31

78.79

R50 U-Net7

82.81

11.09

74.81

92.76

82.82

UNet++9

82.84

11.21

73.74

91.88

80.33

UNet3+10

89.85

1.33

88.76

86.07

94.75

R50 Att-UNet7

83.12

10.41

74.48

93.41

79.57

CBAM36

83.08

10.02

74.13

94.96

78.43

SENet37

82.89

10.23

73.92

95.11

77.89

SKNet38

82.97

10.06

73.95

95.23

78.01

Att-UNet8

83.12

10.41

74.48

93.41

79.57

TransUNet19

83.25

10.01

74.43

94.41

79.18

MT-UNet21

72.57

18.04

61.58

85.96

71.84

TransClaw23

83.49

9.32

74.72

95.00

78.77

SwinUNet32

80.38

12.26

70.86

91.17

77.75

TransDeeplab41

84.00

8.42

75.14

93.38

80.57

LEGO-Net(Ours)

87.88

6.44

79.99

89.50

89.69