Table 7 Faces and edge membership values in the bipolar fuzzy dual graph shown in Fig. 24.

From: Bipolar fuzzy outerplanar graphs approach in image shrinking

Faces

Membership values

Edges

Membership values

\({\mathfrak{f}}_{1}\)

(0.5, − 0.5)

(\({\mathfrak{v}}_{2},{\mathfrak{v}}_{6})\)

(\(0.2,-0.3)\)

\(\left({\mathfrak{v}}_{6},{\mathfrak{v}}_{4}\right)\)

\(\left(0.4,-0.5\right)\)

\(\left({\mathfrak{v}}_{2},{\mathfrak{v}}_{5}\right)\)

(\(0.3,-0.4)\)

\(({\mathfrak{v}}_{5},{\mathfrak{v}}_{4})\)

(\(0.4,-0.4)\)

\({\mathfrak{f}}_{2}\)

(\(0.2,-0.14)\)

(\({\mathfrak{v}}_{2},{\mathfrak{v}}_{6})\)

(\(0.2,-0.3)\)

\(\left({\mathfrak{v}}_{6},{\mathfrak{v}}_{4}\right)\)

\(\left(0.4,-0.5\right)\)

\(\left({\mathfrak{v}}_{2},{\mathfrak{v}}_{3}\right)\)

\(\left(0.3,-0.3\right)\)

\(({\mathfrak{v}}_{3},{\mathfrak{v}}_{4})\)

\(\left(0.1,-0.1\right)\)

\({\mathfrak{f}}_{3}\)

(\(0.2,-0.14)\)

(\({\mathfrak{v}}_{2},{\mathfrak{v}}_{5})\)

\(\left(0.3,-0.4\right)\)

\(\left({\mathfrak{v}}_{4},{\mathfrak{v}}_{5}\right)\)

\(\left(0.4,-0.4\right)\)

\(\left({\mathfrak{v}}_{2},{\mathfrak{v}}_{3}\right)\)

\(\left(0.3,-0.3\right)\)

\(({\mathfrak{v}}_{3},{\mathfrak{v}}_{4})\)

\(\left(0.1,-0.1\right)\)

\(\left({\mathfrak{v}}_{1},{\mathfrak{v}}_{2}\right)\)

\(\left(0.2,-0.2\right)\)