Table 1 Hyperparameters for training.

From: Biologically-informed excitatory and inhibitory ratio for robust spiking neural network training

Parameter

Value

Membrane time constant \(\tau _{mem}\)

10 ms

Synaptic time constant \(\tau _{syn}\)

5 ms

Simulation time step dt

1 ms

Input layer size \(L_{0}\)

784 (FMNIST), 700 (SHD)

Hidden layer size \(L_{1}\)

100 (FMNIST), 200 (SHD)

Output layer size \(L_{2}\)

10 (FMNIST), 20 (SHD)

Batch size

256

Learning rate \(R_L\)

0.01

Optimizer

Gradient descent

Input to hidden initial weight \(\sigma _{L0,1}\)

0.0005 to 0.075 (FMNIST), 0.00005 to 0.003 (SHD)

Hidden to output initial weight \(\sigma _{L1,2}\)

\(7(1-e^{\frac{dt}{\tau _{mem}}})/\sqrt{L_1}\) (FMNIST), 0.0005 to 0.003 (SHD)

Excitatory: inhibitory hidden layer ratio

50:50 to 100:0