Table 3 ANOVA analysis of different terms of RSM-based models.

From: Optimizing drawing frame variables to enhance polyester spun yarn quality using soft computing techniques

Source

D.F

S. S

M.S

P-value

Coefficient-value

Y1

\(\:{Y}_{2}\)

\(\:{Y}_{1}\)

\(\:{Y}_{2}\)

\(\:{Y}_{1}\)

\(\:{Y}_{2}\)

\(\:{Y}_{1}\)

\(\:{Y}_{2}\)

Model

14

3.2931

8463.6475

0.2352

604.5463

0.0433

0.0070

0.7518

0.5148

\(\:{x}_{1}\)

1

0.0112

580.3576

0.0112

580.3576

0.7133

0.0522

− 1.4310

0.7301

\(\:{x}_{2}\)

1

0.1179

1077.9182

0.1179

1077.9182

0.2483

0.0133

0.0857

0.7663

\(\:{x}_{3}\)

1

0.1190

3556.4489

0.1190

3556.4489

0.2462

0.0003

0.0353

− 1.3922

\(\:{x}_{4}\)

1

0.0056

171.7406

0.0056

171.7406

0.7941

0.2584

− 0.8914

0.4771

\(\:{{x}_{1}}^{2}\)

1

1.8113

621.4060

1.8113

621.4060

0.0007

0.0458

− 0.4340

0.1673

\(\:{{x}_{2}}^{2}\)

1

0.0001

128.7248

0.0001

128.7248

0.9785

0.3239

− 0.3307

0.6121

\(\:{{x}_{3}}^{2}\)

1

0.0016

87.3349

0.0016

87.3349

0.8885

0.4128

− 0.2527

− 0.1380

\(\:{{x}_{4}}^{2}\)

1

0.2392

124.8424

0.2392

124.8424

0.1113

0.3310

0.0395

0.0693

\(\:{x}_{1}{x}_{2}\)

1

0.1374

2.5917

0.1374

2.5917

0.2150

0.8859

0.0152

− 0.3094

\(\:{x}_{1}{x}_{3}\)

1

0.0711

265.1484

0.0711

265.1484

0.3635

0.1673

0.2064

0.2540

\(\:{x}_{1}{x}_{4}\)

1

0.0306

57.5990

0.0306

57.5990

0.5459

0.5035

1.8999

− 0.8294

\(\:{x}_{2}{x}_{3}\)

1

0.0034

0.2599

0.0034

0.2599

0.8386

0.9637

0.0001

− 0.4509

\(\:{x}_{2}{x}_{4}\)

1

0.0015

291.8533

0.0015

291.8533

0.8915

0.1493

− 0.0982

0.4664

\(\:{x}_{3}{x}_{4}\)

1

0.0552

66.4733

0.0552

66.4733

0.4212

0.4731

0.8798

− 0.4886

Residual

10

0.7841

1195.7125

0.0784

119.5712

     

Total

24

4.0773

9659.3600

       
  1. Note: D.F is the degree of freedom, S.S is the adjusted sum of squares, and M.S is the adjusted means squares.