Table 4 Experiments Desembocadura.
From: Artificial intelligence for streamflow prediction in river basins: a use case in Mar Menor
Horizon | Algorithm | MAE | RMSE | CVRMSE | WI | NSE |
|---|---|---|---|---|---|---|
1H | DT | 0.008 | 0.076 | 54.448 | 0.922 | 0.858 |
GB | 0.008 | 0.066 | 47.251 | 0.924 | 0.893 | |
KNN | 0.017 | 0.085 | 61.424 | 0.844 | 0.820 | |
LR | 0.008 | 0.054 | 38.961 | 0.921 | 0.928 | |
RF | 0.006 | 0.065 | 46.940 | 0.942 | 0.895 | |
L2 | 0.008 | 0.054 | 38.976 | 0.921 | 0.927 | |
XGB | 0.008 | 0.067 | 48.254 | 0.930 | 0.889 | |
LSTM | 0.016 ± 0.005 | 0.070 ± 0.009 | 50.641 ± 6.850 | 0.850 ± 0.041 | 0.876 ± 0.038 | |
LSTM_IPIP | 0.013 ± 0.001 | 0.062 ± 0.003 | 45.005 ± 2.073 | 0.877 ± 0.013 | 0.903 ± 0.009 | |
12H | DT | 0.234 | 0.995 | 717.318 | 0.163 | − 23.566 |
GB | 0.171 | 0.359 | 259.000 | 0.229 | − 2.203 | |
KNN | 0.050 | 0.202 | 145.612 | 0.542 | − 0.012 | |
LR | NC | NC | NC | NC | NC | |
RF | 0.190 | 0.500 | 360.801 | 0.211 | − 5.215 | |
L2 | 0.096 | 0.216 | 155.375 | 0.394 | − 0.153 | |
XGB | 0.244 | 0.350 | 252.534 | 0.134 | − 2.045 | |
LSTM | 0.048 ± 0.004 | 0.156 ± 0.002 | 111.842 ± 1.774 | 0.606 ± 0.024 | 0.401 ± 0.019 | |
LSTM_IPIP | 0.038 ± 0.004 | 0.149 ± 0.002 | 107.033 ± 1.539 | 0.656 ± 0.022 | 0.451 ± 0.016 | |
24H | DT | 0.116 | 0.365 | 263.043 | 0.323 | − 2.300 |
GB | 0.480 | 0.975 | 703.289 | 0.058 | − 22.592 | |
KNN | 0.110 | 0.342 | 246.618 | 0.326 | − 1.901 | |
LR | 0.073 | 0.206 | 148.654 | 0.435 | − 0.054 | |
RF | 0.313 | 0.716 | 516.317 | 0.110 | − 11.716 | |
L2 | 0.072 | 0.206 | 148.226 | 0.442 | − 0.048 | |
XGB | 0.325 | 0.368 | 265.204 | 0.099 | − 2.355 | |
LSTM | 0.050 ± 0.004 | 0.181 ± 0.002 | 130.213 ± 1.481 | 0.567 ± 0.022 | 0.186 ± 0.019 | |
LSTM_IPIP | 0.043 ± 0.004 | 0.177 ± 0.001 | 127.289 ± 1.058 | 0.587 ± 0.018 | 0.223 ± 0.013 |