Table 4 Experiments Desembocadura.

From: Artificial intelligence for streamflow prediction in river basins: a use case in Mar Menor

Horizon

Algorithm

MAE

RMSE

CVRMSE

WI

NSE

1H

DT

0.008

0.076

54.448

0.922

0.858

GB

0.008

0.066

47.251

0.924

0.893

KNN

0.017

0.085

61.424

0.844

0.820

LR

0.008

0.054

38.961

0.921

0.928

RF

0.006

0.065

46.940

0.942

0.895

L2

0.008

0.054

38.976

0.921

0.927

XGB

0.008

0.067

48.254

0.930

0.889

LSTM

0.016 ± 0.005

0.070 ± 0.009

50.641 ± 6.850

0.850 ± 0.041

0.876 ± 0.038

LSTM_IPIP

0.013 ± 0.001

0.062 ± 0.003

45.005 ± 2.073

0.877 ± 0.013

0.903 ± 0.009

12H

DT

0.234

0.995

717.318

0.163

− 23.566

GB

0.171

0.359

259.000

0.229

− 2.203

KNN

0.050

0.202

145.612

0.542

− 0.012

LR

NC

NC

NC

NC

NC

RF

0.190

0.500

360.801

0.211

− 5.215

L2

0.096

0.216

155.375

0.394

− 0.153

XGB

0.244

0.350

252.534

0.134

− 2.045

LSTM

0.048 ± 0.004

0.156 ± 0.002

111.842 ± 1.774

0.606 ± 0.024

0.401 ± 0.019

LSTM_IPIP

0.038 ± 0.004

0.149 ± 0.002

107.033 ± 1.539

0.656 ± 0.022

0.451 ± 0.016

24H

DT

0.116

0.365

263.043

0.323

− 2.300

GB

0.480

0.975

703.289

0.058

− 22.592

KNN

0.110

0.342

246.618

0.326

− 1.901

LR

0.073

0.206

148.654

0.435

− 0.054

RF

0.313

0.716

516.317

0.110

− 11.716

L2

0.072

0.206

148.226

0.442

− 0.048

XGB

0.325

0.368

265.204

0.099

− 2.355

LSTM

0.050 ± 0.004

0.181 ± 0.002

130.213 ± 1.481

0.567 ± 0.022

0.186 ± 0.019

LSTM_IPIP

0.043 ± 0.004

0.177 ± 0.001

127.289 ± 1.058

0.587 ± 0.018

0.223 ± 0.013

  1. Significant values are in bold.