Table 8 Significance analysis of the models’ performance with different feature extractor on ChiNesE dataset.

From: Transformer-based prototype network for Chinese nested named entity recognition

Feature Extractor

Bert

RoBerta

longformer

roformer

-BiLSTM

\(\mu \left( \% \right)\)

84.64

84.11

84.09

76.47

84.27

\(\sigma\)

0.026

0.018

0.031

0.103

0.023

n

5

5

5

5

5

\(\rho\)

-

0.052

-0.665

-0.190

-0.133

\(\Delta\)

-

0

0

0

0

df

-

4

4

4

4

\(t \, Stat\)

-

-5.80

-3.96

-47.29

-3.48

\(P(T<t)\)

-

0.002

0.008

0.001

0.013

t

-

2.132

2.132

2.132

2.132