Table 2 Results of different training strategies on the LUNA dataset.

From: Lessons learned from RadiologyNET foundation models for transfer learning in medical radiology

 

Pretrain strategy

TL model

LR

Dice score

IoU

U-Net

R

ImageNet

\(10^{-4}\)

0.111 ± 0.002

0.063 ± 0.002

R

RadiologyNET

\(10^{-4}\)

0.111 ± 0.002

0.063 ± 0.001

N/A

Baseline

\(10^{-4}\)

0.616 ± 0.012

0.500 ± 0.011

U-Net- EfficientNetB4

C

ImageNet

\(10^{-4}\)

0.685 ± 0.016

0.582 ± 0.017

C

RadiologyNET

\(10^{-4}\)

0.695 ± 0.022

0.593 ± 0.026

N/A

Baseline

\(10^{-4}\)

0.688 ± 0.013

0.586 ± 0.014

U-Net- ResNet50

C

ImageNet

\(10^{-4}\)

0.692 ± 0.026

0.593 ± 0.03

C

RadiologyNET

\(10^{-5}\)

0.715 ± 0.017

0.616 ± 0.017

N/A

Baseline

\(10^{-4}\)

0.646 ± 0.027

0.538 ± 0.03

U-Net- VGG16

C

ImageNet

\(10^{-5}\)

0.729 ± 0.01

0.632 ± 0.015

C

RadiologyNET

\(10^{-4}\)

0.706 ± 0.015

0.605 ± 0.019

N/A

Baseline

\(10^{-4}\)

0.704 ± 0.03

0.601 ± 0.033

  1. Results are shown for U-Net, U-Net-ResNet50, U-Net-EfficientNetB4, and U-Net-VGG16 models for Reconstruction (R) and Classification (C) pretraining strategies. Best results are emphasized.
  2. LR Learning Rate, IoU Intersection-over-Union.