Table 1 Summary of existing methods and research gaps.
Author (Year) | Method | Dataset | Accuracy | Gap / Limitation |
|---|---|---|---|---|
Sharma et al. (2025)74 | ML Intelligent System Review | Multiple HD Datasets | – | No spectrogram-based, no percussion/palpation classification |
Dhanka & Maini (2024)75 | HyOPTXGBoost + HyOPTRF with Optuna | Statlog HD Dataset | 96.30% | Single-organ focus; lacks generalization to other signals |
Dhanka et al. (2023)76 | XGBoost + Logistic Regression | Cleveland Dataset | 91.85% | Binary classification only; no multi-region signal processing |
Viji et al. (2024)77 | STO-IWGAN Hybrid | Energy System Dataset | 95% | Non-medical domain; optimization only |
Dhanka & Maini (2025)78 | Hybrid XGBoost with Optuna | Cardiovascular Dataset | 95.45% | Focus on outlier handling; not spectrogram or ensemble-based |
This study | CNN + SVM + RF Ensemble | Spectrograms from iApp (Percussion & Palpation) | 95.4% | First to classify 8 anatomical regions from spectrograms |