Table 1 Comparative summary of related works.

From: An integrating RAG-LLM and deep Q-network framework for intelligent fish control systems

Study

Methodology

Task domain

Actuation

/ Automation

Explainability

Adaptivity

(RL)

LLM

Chahid et al.15

Q-learning

Feed scheduling, growth control

Manual response

Low

Yes

No

Chen et al.14

DQN

Fish school movement modeling

Simulation only

Low

Yes

No

Metin et al.19

Temporal Fusion Transformer (TFT)

Forecasting nitrate levels

No control layer

Moderate

No

No

Kim et al.7

AI-RCAS + vision

Species recognition, catch check

Diagnostic only

High

No

No

This work

RAG-LLM + DQN ensemble

Full aquaculture automation

Full actuator control

Moderate–High

Yes

Yes