Table 4 Comparison of classical chunk-selection baselines versus our DQN-based selector.
From: An integrating RAG-LLM and deep Q-network framework for intelligent fish control systems
Method | Precision@1 | Recall@5 | QA accuracy (%) |
|---|---|---|---|
BM25 | 0.65 | 0.85 | 60.0 |
MMR (\(\lambda =0.7\)) | 0.68 | 0.88 | 63.0 |
Top-k Cosine (\(k=5\)) | 0.70 | 0.89 | 65.0 |
DQN | 0.78 | 0.94 | 72.0 |