Table 8 Polynomial (quadratic) regression models for kharif crops.

From: Remote sensing-based spatiotemporal assessment of agricultural drought and its impact on crop yields in Punjab, Pakistan

Sr#

Quadratic models

Coefficient

P-value

R

R2

1.

SYRSsugarcane Vs SDRSVCI

(0.149) + 0.672(SDRSVCI) – 0.165(SDRSVCI

0.000***

0.79

0.62

2.

SYRSsugarcane Vs SDRSTCI

(0.117) – 0.110(SDRSTCI) – 0.130(SDRSTCI

0.71

0.19

0.03

3.

SYRSsugarcane Vs SDRSVHI

(− 0.042) + 0.417(SDRSVHI) + 0.047(SDRSVHI

0.25

0.38

0.14

4.

SYRSrice Vs SDRSVCI

(0.118) + 0.480(SDRSVCI) – 0.131(SDRSVCI

0.03*

0.57

0.33

5.

SYRSrice Vs SDRSTCI

(− 0.073) + 0.368(SDRSTCI) + 0.081(SDRSTCI

0.48

0.28

0.08

6.

SYRSrice Vs SDRSVHI

(− 0.077) + 0.518(SDRSVHI) + 0.085(SDRSVHI

0.12

0.46

0.21

7.

SYRSmaize Vs SDRSVCI

(0.049) + 0.225(SDRSVCI) – 0.054(SDRSVCI

0.53

0.26

0.07

8.

SYRSmaize Vs SDRSTCI

(− 0.096) – 0.141(SDRSTCI) + 0.107(SDRSTCI

0.40

0.32

0.10

9.

SYRSmaize Vs SDRSVHI

(− 0.152) + 0.046(SDRSVHI) + 0.169((SDRSVHI

0.41

0.31

0.09

10.

SYRScotton Vs SDRSVCI

(0.101) + 0.077(SDRSVCI) – 0.112(SDRSVCI

0.66

0.21

0.04

11.

SYRScotton Vs SDRSTCI

(0.052) – 0.301(SDRSTCI) – 0.058(SDRSTCI

0.60

0.24

0.05

12.

SYRScotton Vs SDRSVHI

(0.015) – 0.135(SDRSVHI) – 0.017(SDRSVHI

0.87

0.12

0.01