Table 5 Inference times in seconds from the experiments on Jetson Orin Nano using the tiny versions of the networks.

From: Efficient attention vision transformers for monocular depth estimation on resource-limited hardware

Model

Jetson NYU [s] \(\downarrow\)

Jetson KITTI [s] \(\downarrow\)

METER

328.49

343.79

Meta METER

215.33

221.21

Pyra METER

310.59

336.41

MoH METER

344.43

351.07

PXF

1924.38

2765.59

Meta PXF

1373.43

1970.51

Meta-Base PXF

1543.57

2216.83

Base-Meta PXF

1722.62

2469.82

Pyra PXF

1915.70

2709.43

Pyra-Base PXF

1927.62

2712.86

Base-Pyra PXF

1906.42

2735.54

MoH PXF

2027.07

2876.13

MoH-Base PXF

2000.42

2844.66

Base-MoH PXF

1942.72

2809.53

NeWCRFs

2316.55

3185.19

Meta NeWCRFs

1615.87

2235.18

Meta-Base NeWCRFs

1958.86

2730.05

Base-Meta NeWCRFs

2007.11

2779.84

Pyra NeWCRFs

2380.42

3391.28

Pyra-Base NeWCRFs

2323.66

3241.11

Base-Pyra NeWCRFs

2368.85

3281.75

MoH NeWCRFs

2482.51

3456.72

MoH-Base NeWCRFs

2375.26

3329.97

Base-MoH NeWCRFs

2292.42

3409.21