Table 2 Classification Performance for BCIC IV 2a subjects 1-9. Comparison of EEGEncoder, ACTNet, TCNetFusion, EEGTCNet, and D-ATCNet Models in Terms of Accuracy and Kappa Coefficient.

From: Advancing BCI with a transformer-based model for motor imagery classification

Subject

EEGEncoder

ATCNet32

TCNetFusion44

EEGTCNet45

D-ATCNet46

Acc(%)

Kappa

Acc(%)

Kappa

Acc(%)

Kappa

Acc(%)

Kappa

Acc(%)

Kappa

1

86.46

0.82

86.11

0.82

79.17

0.72

74.31

0.66

87.5

0.83

2

74.65

0.66

72.57

0.63

64.24

0.52

52.78

0.37

70.0

0.60

3

96.53

0.95

93.06

0.91

88.54

0.85

88.89

0.85

94.9

0.93

4

81.94

0.76

84.03

0.79

64.93

0.53

57.99

0.44

80.5

0.74

5

84.03

0.79

77.43

0.70

71.53

0.62

72.92

0.64

79.5

0.73

6

77.78

0.70

73.61

0.65

55.56

0.41

43.75

0.25

74.4

0.66

7

95.83

0.94

93.40

0.91

86.81

0.82

72.57

0.63

93.2

0.91

8

89.24

0.86

86.81

0.82

80.90

0.75

77.43

0.70

87.6

0.83

9

91.67

0.89

90.97

0.88

80.21

0.74

74.31

0.66

89.6

0.86

Mean

86.46

0.82

84.22

0.79

74.65

0.66

68.33

0.58

84.1

0.79

ITR(bits/min)

1400.6

 

959.0

 

1022.5

 

860.0

 

–

 
  1. Significant values are in bold.