Table 4 The classification results of the selected models on the proposed dataset.

From: A customized image editing framework for diverse prohibited and restricted products in illegal online transactions

Model

Accuracy (%)

Precision (%)

Recall (%)

F1-Score (%)

AlexNet

77.67

70.55

69.16

69.20

ConvNeXt

88.07

85.15

82.01

83.05

EfficientNet

85.87

80.77

78.84

79.47

EfficientNetV2

85.36

82.54

78.68

79.98

MobileNetV2

84.98

81.59

78.21

79.23

MobileNetV3

84.87

80.86

77.96

78.99

ResNet50

80.19

73.08

68.92

70.38

ResNeXt50

85.68

81.12

78.33

79.25

SEResNet50

85.96

80.58

78.08

78.84

ShuffleNetV1

86.56

82.79

80.06

80.89

ShuffleNetV2

86.67

82.29

79.29

80.31

Swin Transformer

85.96

82.30

79.33

80.30

Vision Transformer

79.03

77.77

71.63

73.77

VGG

82.07

75.45

72.81

73.55