Table 6 The comparative results proposed methods with other methods on both datasets.

From: Multiscale wavelet attention convolutional network for facial expression recognition

Method

Year

Dataset

Precision

Recall

F1 score

Accuracy

DDMAFN

2024

FESR

88.086%

87.346%

0.872648

87.346%

MLCL-Net

2022

91.712%

91.636%

0.915784

91.636%

ResEmoteNet

2024

92.768%

92.520%

0.924622

92.520%

MA-Net

2021

95.231%

95.170%

0.951586

95.170%

CDERNet

2024

95.112%

94.942%

0.948612

94.892%

wCA-MCNN (Ours)

-

88.868%

87.244%

0.877576

92.438%

MsC-wCA-ResNet18 (Ours)

-

95.974%

94.702%

0.952918

97.664%

DDMAFN

2024

KDEF

87.356%

90.528%

0.885360

93.258%

MLCL-Net

2022

82.968%

82.506%

0.824844

91.914%

ResEmoteNet

2024

72.408%

73.880%

0.720210

83.532%

MA-Net

2021

84.708%

87.476%

0.856496

90.482%

CDERNet

2024

85.993%

86.194%

0.857028

92.059%

wCA-MCNN (Ours)

-

95.074%

94.968%

0.949420

94.968%

MsC-wCA-ResNet18 (Ours)

-

97.510%

97.483%

0.974806

97.484%