Table 1 Performance comparison of noise elimination using five different algorithms: Least mean squares (LMS), Recursive least squares (RLS), Kalman filter, Long short-term memory network (LSTM), and Enhanced LSTM.

From: Advancements in noise reduction for wheel speed sensing using enhanced LSTM models

 

LMS

RLS

Kalman filter

LSTM

Enhanced LSTM

MSE

1.938626

1.930258

0.087108

0.039759

0.000662

RMSE

1.392345

1.389337

0.295141

0.140902

0.010640

SNR

12.166664 dB

11.865727 dB

10.602338 dB

14.008629 dB

31.797619 dB

MAE

1.051012

1.056992

0.226804

0.140902

0.010640

PSNR

-2.874940 dB

-2.856153 dB

10.599401 dB

21.546593 dB

46.325974 dB

R

0.969277

0.966902

0.955583

0.980656

0.999507