Table 4 Performance comparison of various machine learning models using radiomic features extracted via univariate (Uni) and combined univariate plus multivariate (Multi) techniques.
Model | AUC (Uni) | Accuracy (Uni) | F1 Score (Uni) | AUC (Multi) | Accuracy (Multi) | Precision (Multi) | Recall (Multi) | F1 Score (Multi) |
|---|---|---|---|---|---|---|---|---|
RF | 0.58 | 0.60 | 0.52 | 0.96 ± 0.04 | 0.88 ± 0.05 | 0.88 ± 0.04 | 0.95 ± 0.03 | 0.90 ± 0.05 |
ET | 0.54 | 0.58 | 0.49 | 0.96 ± 0.03 | 0.96 ± 0.02 | 0.96 ± 0.03 | 0.92 ± 0.05 | 0.90 ± 0.04 |
LR | 0.44 | 0.50 | 0.42 | 0.90 ± 0.03 | 0.73 ± 0.08 | 0.77 ± 0.06 | 0.75 ± 0.10 | 0.72 ± 0.06 |
LDA | 0.44 | 0.50 | 0.42 | 0.78 ± 0.08 | 0.85 ± 0.04 | 0.81 ± 0.04 | 0.94 ± 0.05 | 0.88 ± 0.07 |
QDA | 0.57 | 0.60 | 0.59 | 0.90 ± 0.05 | 0.84 ± 0.03 | 0.87 ± 0.03 | 0.87 ± 0.04 | 0.88 ± 0.02 |
AB | 0.47 | 0.48 | 0.34 | 0.96 ± 0.04 | 0.92 ± 0.05 | 0.95 ± 0.05 | 0.96 ± 0.04 | 0.96 ± 0.04 |
KNN | 0.42 | 0.40 | 0.40 | 0.89 ± 0.04 | 0.95 ± 0.03 | 0.95 ± 0.05 | 0.86 ± 0.03 | 0.90 ± 0.04 |
NB | 0.48 | 0.47 | 0.38 | 0.69 ± 0.08 | 0.68 ± 0.12 | 0.95 ± 0.05 | 0.48 ± 0.15 | 0.61 ± 0.11 |
SVM | 0.52 | 0.50 | 0.40 | 0.92 ± 0.05 | 0.88 ± 0.06 | 0.94 ± 0.06 | 0.86 ± 0.05 | 0.87 ± 0.07 |
MLP | 0.54 | 0.58 | 0.55 | 0.91 ± 0.05 | 0.91 ± 0.02 | 0.89 ± 0.03 | 0.97 ± 0.02 | 0.91 ± 0.03 |