Table 4 Base YOLOv8 models performance and parameters on test normal-case dataset and test hard-case dataset.

From: Enhancing the YOLOv8 model for realtime object detection to ensure online platform safety

Train Dataset

Test Dataset

Models

Precision

Recall

mAP50

mAP50-90

Parameters

train normal Dataset

test normal Dataset

YOLOv8n

0.72

0.68

0.71

0.55

\(3.007 \textrm{M}\)

YOLOv8s

0.73

0.65

0.74

0.58

\(11.12 \textrm{M}\)

YOLOv8m

0.72

0.68

0.77

0.62

\(25.84 \textrm{M}\)

test hard Dataset

YOLOv8n

0.65

0.58

0.55

0.43

\(3.007 \textrm{M}\)

YOLOv8s

0.67

0.57

0.65

0.46

\(11.12 \textrm{M}\)

YOLOv8m

0.66

0.61

0.69

0.55

\(25.84 \textrm{M}\)

train ( normal Dataset    \(\cup\)

hard Dataset)

test normal Dataset

YOLOv8n

0.75

0.66

0.72

0.58

\(3.007 \textrm{M}\)

YOLOv8s

0.70

0.68

0.79

0.63

\(11.12 \textrm{M}\)

YOLOv8m

0.79

0.75

0.85

0.68

\(25.84 \textrm{M}\)

test hard Dataset

YOLOv8n

0.68

0.67

0.68

0.55

\(3.007 \textrm{M}\)

YOLOv8s

0.72

0.68

0.75

0.63

\(11.12 \textrm{M}\)

YOLOv8m

0.73

0.70

0.76

0.57

\(25.84 \textrm{M}\)