Table 1 Comparison between GIRPSM with the q-HAShTM, VIM, FNDM, q-HATM for example1 at t = 1, \(\alpha = 1\), \(\rho = 0.001\).

From: Analytical treatment of the fractional Zakharov–Kuznetsov equation via the generalized integral residual power series method

x

y

Numerical solution

q-HAShTM36

VIM32

FNDM34

q-HATM34

GIRPSM

0.02

0.02

3.00 \(*{10}^{-7}\)

7.90 \(*{10}^{-6}\)

3.01 \(*{10}^{-7}\)

3.01 \(*{10}^{-7}\)

3.00 \(*{10}^{-7}\)

0.04

4.65 \(*{10}^{-7}\)

1.19 \(*{10}^{-5}\)

4.65 \(*{10}^{-7}\)

4.65 \(*{10}^{-7}\)

4.63 \(*{10}^{-7}\)

0.06

6.34 \(*{10}^{-7}\)

1.59 \(*{10}^{-5}\)

6.34 \(*{10}^{-7}\)

6.34 \(*{10}^{-7}\)

6.29 \(*{10}^{-7}\)

0.08

8.10 \(*{10}^{-7}\)

2.00 \(*{10}^{-5}\)

8.10 \(*{10}^{-7}\)

8.10 \(*{10}^{-7}\)

8.00 \(*{10}^{-7}\)

0.1

9.96 \(*{10}^{-7}\)

2.41 \(*{10}^{-5}\)

9.96 \(*{10}^{-7}\)

9.96 \(*{10}^{-7}\)

9.77 \(*{10}^{-7}\)

0.06

0.02

6.34 \(*{10}^{-7}\)

1.59 \({*10}^{-5}\)

6.34 \(*{10}^{-7}\)

6.34 \(*{10}^{-7}\)

6.29 \(*{10}^{-7}\)

0.04

8.10 \(*{10}^{-7}\)

2.00 \(*{10}^{-5}\)

8.10 \(*{10}^{-7}\)

8.10 \(*{10}^{-7}\)

8.00 \(*{10}^{-7}\)

0.06

9.96 \(*{10}^{-7}\)

2.41 \({*10}^{-5}\)

9.96 \(*{10}^{-7}\)

9.96 \(*{10}^{-7}\)

9.77 \(*{10}^{-7}\)

0.08

1.19 \(*{10}^{-6}\)

2.84 \(*{10}^{-5}\)

1.19 \(*{10}^{-6}\)

1.19 \(*{10}^{-6}\)

1.16 \(*{10}^{-6}\)

0.1

1.40 \(*{10}^{-6}\)

3.27 \(*{10}^{-5}\)

1.40 \(*{10}^{-6}\)

1.40 \(*{10}^{-6}\)

1.35 \(*{10}^{-6}\)

0.1

0.02

9.96 \(*{10}^{-7}\)

2.41 \(*{10}^{-5}\)

9.96 \(*{10}^{-6}\)

9.96 \(*{10}^{-7}\)

9.77 \(*{10}^{-7}\)

0.04

1.19 \(*{10}^{-6}\)

2.84 \(*{10}^{-5}\)

1.19 \(*{10}^{-6}\)

1.19 \(*{10}^{-6}\)

1.16 \(*{10}^{-6}\)

0.06

1.40 \(*{10}^{-6}\)

3.27 \(*{10}^{-5}\)

1.40 \(*{10}^{-6}\)

1.40 \(*{10}^{-6}\)

1.35 \(*{10}^{-6}\)

0.08

1.62 \(*{10}^{-6}\)

3.72 \(*{10}^{-5}\)

1.63 \(*{10}^{-6}\)

1.63 \(*{10}^{-6}\)

1.55 \(*{10}^{-6}\)

0.1

1.87 \(*{10}^{-6}\)

418 \(*{10}^{-5}\)

1.87 \(*{10}^{-6}\)

1.87 \(*{10}^{-6}\)

1.77 \(*{10}^{-6}\)