Table 2 Numerical outcome to example 1.

From: Analytical treatment of the fractional Zakharov–Kuznetsov equation via the generalized integral residual power series method

x

y

t

Exact

GIRPSM

α = 0.75

α = 0.9

α = 1

0.1

0.1

0.1

5.399 \(*{10}^{-5}\)

5.359 \(*{10}^{-5}\)

5.373 \(*{10}^{-5}\)

5.381 \(*{10}^{-5}\)

0.25

5.391 \(*{10}^{-5}\)

5.314 \(*{10}^{-5}\)

5.334 \(*{10}^{-5}\)

5.345 \(*{10}^{-5}\)

0.5

5.377 \(*{10}^{-5}\)

5.254 \(*{10}^{-5}\)

5.274 \(*{10}^{-5}\)

5.287 \(*{10}^{-5}\)

0.75

5.363 \(*{10}^{-5}\)

5.202 \(*{10}^{-5}\)

5.218 \(*{10}^{-5}\)

5.230 \(*{10}^{-5}\)

1

5.350 \(*{10}^{-5}\)

5.154 \(*{10}^{-5}\)

5.164 \(*{10}^{-5}\)

5.173 \(*{10}^{-5}\)

0.5

0.5

0.1

0.001840

0.001827

0.0018321

0.001834

0.25

0.001840

0.001815

0.0018206

0.001823

0.5

0.001839

0.001798

0.0018037

0.001807

0.75

0.001837

0.001784

0.0017885

0.001791

1

0.001836

0.001771

0.0017742

0.001776

1

1

0.1

0.017535

0.016873

0.0170776

0.017176

0.25

0.017529

0.016028

0.0165129

0.016692

0.5

0.017520

0.013501

0.0150977

0.015657

0.75

0.017511

0.008914

0.0123300

0.013710

1

0.017502

0.001843

0.0075050

0.010127