Table 3 Comparative outcomes of BGWO-EDLMHAR technique with existing methods18,45,46.

From: Implementing ensemble of deep learning model with optimization techniques for human activity recognition to assist individuals with disabilities

Classifier

Accuy

Precn

Recal

F1score

BGWO-EDLMHAR

98.51

94.70

91.76

93.11

SHO-LSTM

97.82

90.26

89.03

91.56

MFCC

98.01

93.13

87.75

91.26

CA-WGNN

96.68

93.29

88.37

92.48

RecurrentHAR

96.26

89.19

89.43

87.72

DeepConvLG

98.01

90.93

88.19

87.27

ResNet-BiGRU-SE

98.11

89.77

88.63

91.54

Generic algorithm

97.24

89.61

88.46

90.86

CNN-BiLSTM

97.40

92.55

86.96

90.53

TAHAR-student-LSTM

96.04

93.37

87.71

92.86

HMM method

94.36

89.05

88.96

90.02