Table 2 Evaluating optimal gradient boosting hyperparameters using four optimization techniques within a specified parameter range.
Tuning parameter | Considered range | SADE | ES | BPI | BBO |
|---|---|---|---|---|---|
n_estimators | [50–300] | 223 | 159 | 247 | 230 |
max_depth | [5–20] | 5 | 15 | 14 | 12 |
max_features | [0.1–1] | 0.7146 | 0.2846 | 0.2221 | 0.2595 |
min_samples_split | [0.01–0.5] | 0.2850 | 0.3593 | 0.2522 | 0.3079 |
learning_rate | [0.01–0.3] | 0.0191 | 0.0335 | 0.0339 | 0.0359 |
subsample | [0.5–1] | 0.6535 | 0.9836 | 0.6462 | 0.7706 |
min_samples_leaf | [0.01–0.5] | 3.0000 | 0.0173 | 0.0206 | 0.0191 |