Table 1 Comparison of (I-P)-PDN controller with commonly used controllers.

From: Enhanced load frequency regulation in microgrids with renewable energy sources and electric vehicles

Ref

Areas

Controller

Optimization

Algorithm

∆F1

∆F2

∆F3

Ts

OSH /USH

OSH/USH

OSH/USH

38

Multi

ITPFOD

Satin Bowerbird Optimizer (SBO)

-/-

-/-

-/-

-

39

Multi

Virtual Synch Gen (VSG)-based VIC via HVDC link

Particle Swarm Optimization (PSO)

-/-

-/-

-/-

-

50

Multi

-

Modified Artificial Flora Optimization (MAFO)

-/-

-/-

-/-

-

51

Multi

PID

Enhanced Whale Optimization Algorithm (EWOA)

-/-

-/-

-/-

-

55

01 & Multi

Cascaded Fuzzy-CFFOPI-FOPID

Imperialist Competitive Algorithm (ICA)

0.02110/0.0425

0.0063/0.0147

0.0019/0.0112

Ts1:8.4

Ts2:12.02

Ts3:12.15

53

Multi

FOPID-TID(LFC),

FOPID (SMES)

Manta Ray Foraging Optimization (MRFO)

0.0135/-

0.0078/-

-/-

Ts1:18

Ts2:23

34

03

Type-2 Fuzzy Controller

Discrete Water Cycle Algorithm (d-WCA)

-/-

-/-

-/-

-

32

03

T2F-CPIF

Crow Search Algorithm (CSA)

0.002/- 0.024

-/-

0.001/-

Ts1:3.86

Ts3:3.26

26

03

PI

Teaching Learning-Based Optimization (TLBO) with LMI

0.6235/-

0.4264/-

0.3572/-

-

25

03

MPC

JAYA Algorithm

-/-

-/-

-/-

-

47

01

LFC controller Unknown Input Observer (UIO)

RL-DDPG

-/-

-/-

-/-

-

58

01

Nonlinear-PI

Dandelion Optimizer (DO)

0.007860/0.000083

-/-

-/-

6.610

29

01

PD–PI

Gorilla Troops Optimization (GTO)

0.00569/0.00527

-/-

-/-

1.599

59

01-IµG

PI and PID

Artificial Rabbits Optimization (ARO)

0.013/-0.115

-/-

-/-

Ts1:2.96

57

MµG

PIλDND2N2

Grey Wolf Optimizer (GWO)

-/-

 

-/-

-

27

01

FO-Multistage PD/(1 + PI)

Least Squares Method + Minimum Variance

0.06/-0.001

0.062/-

-/-

Ts1:6.8

Ts2:6.2

44

01

H ∞ and LQG

Kalman Filter + Optimal Weighting

-

-/-

-/-

-

28

01

PI–PD

Salp Swarm Optimization (SSO)

0.0011/0.0011

-/-

-/-

Ts1:3.5459

60

02

FOPIDN-(1 + PIDN)

GWO

0.00000/0.05450

0.00000/0.00953

-/-

Ts1:14.39

Ts2:19.69

49

02

(FO-Fuzzy PSS)

Advanced Sine Cosine Algorithm (a-SCA)

0.0042/-0.0084

0.0062/-0.0262

-/-

Ts1: 8.620

Ts2:7.812

35

02

(Fuzzy-T2-PSS)

Modified Crow Search Algorithm (M-CSA)

0.0724/0.0912

0.0342/0.0012

-/-

Ts1:3.8206

Ts2: 4.201

33

02

FO-T2FC

Quassi-Oppositional Path Finder Algorithm (QO-PFA)

0.0382/-0.0676

0.0426/-0.0462

-/-

Ts1:5.68

Ts2:6.48

56

02

Intelligent-FOI

Grey Wolf Optimizer (GWO)

-/-

-/-

-/-

-

36

02

TD-TI

Quantum Chaos Game Optimizer (QCGO)

52.43/60.01

99.36/86.4

-/-

-

54

02

FOPID + TID

Artificial Ecosystem Optimization (AEO)

-/0.0217

0.0002/0.0072

-/-

Ts1:67

Ts2:91

24

02

Self-tuned AGC

Improved Sine Cosine Algorithm (i-SCA)

-/-

-/-

-/-

-

42

02

Adaptive-MPC

MPC algorithm

-/-

-/-

-/-

-

52

02

FOPIDA-FOIDN

Hybrid AGTO-EO (HGTOEO)

-/-

-/-

-/-

-

Proposed

02

(I-P)-PDN

Black-winged kite Algorithm

0.0000227/

-0.00128

-0.00000917/

-0.00120

-/-

Ts1: 0.75

Ts2: 0.98

Ts3Ptie:1.189

0.000418/ 0.00000431

0.000378/

-0.00037

-/-