Table 3 Result of error evaluation of algorithms for training and validation set.

From: Passive determination of anisotropic compressive strength of 3D printed concrete using multiple neural networks enhanced with explainable machine learning (XML)

Error Metrics

Criteria

MLP

RBFNN

CNN

Training

Validation

Training

Validation

Training

Validation

MAE

Lower values indicate higher accuracy

5.884

8.695

4.902

5.42

4.712

5.389

RMSE

Lower values indicate higher accuracy

8.381

9.08

7.523

7.908

6.510

7.488

\(\:{\text{R}}^{2}\)

Higher values indicate higher accuracy

0.9347

0.904

0.947

0.9488

0.957

0.9544

A20

Higher values indicate higher accuracy

0.843

0.79

0.85

0.80

0.918

0.95

PI

Lower values indicate higher accuracy

0.067

0.071

0.060

0.061

0.049

0.051

OF

Lower values indicate higher accuracy

0.0686

0.057

0.0498