Table 7 Evaluation results of the comparison against the most recent research endeavors in the field of Arabic character classification in artificial intelligence.

From: Integrating CNN and transformer architectures for superior Arabic printed and handwriting characters classification

Study

Dataset

Methods

Accuracy

Alghamdi, Taghreed, et al.19, 2021

Arabic OCR dataset

CNN and VGG16

92.09%

A. Mohammed and R. Kora16, 2022

HODA Arabic handwritten digit dataset

Ensemble CNN and LSTM

99.39%

K. M. O. Nahar et al.21,

2023

Arabic OCR dataset

VGG16, VGG19

88.8%

M. S. Alwagdani, et al.15,

2023

Hijja dataset and AHCR

SVM

92.96%

Alsayed. A, et al.18, 2025

AHCR

CNN + Kolmogorov Arnold Networks

97.71%

M. G. Mahdi, et al.7, 2024

AHCR dataset

Bi-lstm

97.05%

H. AlShehri24, 2024

AHCR dataset

Transfer learning

98.11%

Our proposed work

Arabic OCR Dataset

A hybrid transformer ViT model

99.51

AHCR dataset

98.20