Table 3 Algorithms parameters used in the simulation.
Algorithm | forecasting problem | Uncertainty modelling | Objective function framework | |||
|---|---|---|---|---|---|---|
Case 1 | Hidden layer size | 20 | - | Min. Cost, Min. emissions, Min. LESP, Min. deviation between actual and optimal levels of energy demands as a single objective function | ||
No. neurons | 10 | |||||
No. epochs | 1000 | |||||
\(\:{iter\:}^{\text{m}\text{a}\text{x}}\) | 100 | |||||
Learning rate | 0.1000 | |||||
Batch size | 20 | |||||
Train function | trainlm | |||||
Goal error | 1\(\:{e}^{-4}\) | |||||
Train ratio | 0.7 | |||||
Validation ratio | 0.15 | |||||
Test ratio | 0.15 | |||||
RMSE | 19.0333 | |||||
Case 2 | Hidden layer size | 20 | Time interval | 24 | Obj. function | Min. Cost, Min. emissions, Min. LESP, Min. deviation between actual and optimal levels of energy demands as a multi-objective function |
No. neurons | 10 | |||||
No. epochs | 1000 | Population size | 100 | |||
\(\:{iter\:}^{\text{m}\text{a}\text{x}}\) | 100 | |||||
Learning rate | 0.1000 | Max. generations | 200 | |||
Batch size | 20 | |||||
Train function | trainlm | \(\:{iter\:}^{\text{m}\text{a}\text{x}}\) | 1000 | \(\:{l}_{b}\) | \(\:\left[0\:0\:35\:6.8\:2\right]\) | |
Goal error | 1\(\:{e}^{-4}\) | \(\:{u}_{b}\) | \(\:\left[0.6\:0.4\:40\:7.4\:5\right]\) | |||
Train ratio | 0.7 | Crossover fraction | 0.6 | |||
Validation ratio | 0.15 | |||||
Test ratio | 0.15 | Pareto fraction | 0.3 | |||
RMSE | 0.2828 | |||||
Case 3 | Hidden layer size | [5 30] | Time interval | 24 | Obj. function | Min. Cost, Min. emissions, Min. LESP, Min. deviation between actual and optimal levels of energy demands as a multi-objective function |
no. epochs | [100 1000] | |||||
train function | trainlm | Population size | 100 | |||
Query budget | 50 | |||||
\(\:{iter\:}^{\text{m}\text{a}\text{x}}\) | 100 | Max. generations | 200 | |||
Best hidden layer size | 30 neurons | Num. scenarios | 1000 | |||
Training goal | \(\:2.72\text{*}{10\:}^{-6}\) | \(\:{l}_{b}\) | \(\:Varied\) | |||
Training epoch | 647 | normrnd | (Mean, std) | \(\:{u}_{b}\) | \(\:\text{V}\text{a}\text{r}\text{i}\text{e}\text{d}\) | |
Best RMSE | 0.2356 | |||||