Table 7 FLOPs and parameter counts in each method.

From: Automated non-PPE detection on construction sites using YOLOv10 and transformer architectures for surveillance and body worn cameras with benchmark datasets

Detector

Architecture

FLOPs (G)

Parameters (M)

Faster R-CNN

ResNet-101

253.7

61.2

ResNet-152

302.5

76.8

MobileNetv3

72.4

14.9

SSD500

ResNet-101

149.8

34.7

ResNet-152

171.3

48.5

MobileNetv3

49.6

10.1

R-FCN

ResNet-101

188.7

42.2

ResNet-152

222.6

56.9

MobileNetv3

59.8

11.3

YOLOv5

CSPDarknet53s

35.8

7.3

CSPDarknet53x

54.2

18.4

YOLOv8

Swin Transformer

64.7

23.6

PVT

60.2

20.4

Axial Transformer

57.9

19.7

YOLOv10

CSPNet

61.7

21.8

ConvNeXt

59.4

23.5

EfficientNet

45.3

16.2

ViT

84.6

28.9

Swin Transformer

67.8

24.1

PVT

65.9

23.2