Table 2 Comparison of average Accuracy, Precision, Recall, F1 score, Times, Flop and Params of different network models.

From: Lightweight grape leaf disease recognition method based on transformer framework

Methods

Accuracy

Precision

Recall

F1 score

Top Acc

Flop(G)

Params (M)

Times (ms)

ConvNext V2

95.89

96.02

95.98

95.97

96.41

4.45

27.79`

28

InceptionNext

93.81

92.75

92.73

92.72

95.74

4.20

28.04

32

DenseNet121

98.30

98.06

98.06

98.04

99.71

2.83

7.89

37

ResNet50

97.71

97.70

97.69

97.65

99.75

4.13

25.55

14

EfficientNet V2

95.73

95.59

95.52

95.39

98.16

2.85

21.305

26

Mobilenet V4

88.16

88.14

88.05

87.50

93.78

0.18

2.46

6.9

GhostNetV2

91.55

94.47

91.61

91.46

94.07

0.18

4.87

23

Deit3

95.95

95.92

95.89

95.82

98.62

4.24

21.97

7

EfficientFormer V2

96.82

96.11

96.09

96.06

99.04

1.23

12.63

23

MobileVit V2

93.45

92.64

92.58

92.55

96.20

1.41

4.87

14

SwinTransformer V2

96.29

96.29

96.23

96.18

98.25

4.51

28.33

17

TinyVit

96.20

95.54

95.43

95.46

97.70

1.19

12.07

10

CaitNet

93.43

92.89

93.44

92.87

98.54

8.63

46.82

15

MvitV2

80.86

80.56

80.58

80.31

89.97

3.97

24.07

17

DLVTNet

98.48

98.48

98.47

98.46

99.79

0.49

1.05

8