Table 15 Model performance-breast cancer dataset.

From: Distilling knowledge from graph neural networks trained on cell graphs to non-neural student models

Model

Acc_Train ± std

Acc_Val ± std

Acc_test ± std

F1_train ± std

F1_Val ± std

F1_test ± std

Teacher Model

0.9818 ± 0.0021

0.9466 ± 0.0013

0.9111 ± 0.0138

0.9818 ± 0.0021

0.9460 ± 0.0013

0.9059 ± 0.0159

ExtraTrees trained on hard labels

0.9448 ±0.0020

0.9447 ±0.001

0.90392 ± 0.007

0.9449 ± 0.0019

0.94487 ± 0.0011

0.90752 ±0.006

ExtraTrees trained on logits

0.95027 ± 0.0031

0.9438 ± 0.00533

0.95774064 ± 0.00344

0.95031 ± 0.0031

0.94384 ± 0.0053

0.95788 ± 0.00344

ExtraTrees trained on Calibrated

probs using IR

0.9512 ± 0.0025

0.94827 ± 0.0061

0.9584 ± 0.0037

0.9513 ± 0.0026

0.9483 ± 0.0061

0.9587 ± 0.0037

ExtraTrees trained on Calibrated

probs using temp scaling-BS

0.95000 ± 0.0030

0.9464 ± 0.004519

0.95623 ± 0.003135

0.9500 ± 0.0030

0.94645 ± 0.0045

0.9565 ± 0.0032

ExtraTrees trained on Calibrated

probs using temp scaling-LL

0.95051 ± 0.002

0.94643 ± 0.0041

0.95751 ± 0.0023

0.950 ± 0.0027

0.9464 ± 0.00422

0.95777 ± 0.0024

XGBoost trained on hard labels

0.9683 ± 0

0.9614 ± 1.11e-16

0.90708 ± 0

0.9682 ± 0

0.9613 ± 1.11e-16

0.9105 ± 0

XGBoost trained on logits

0.9575 ± 0

0.9508 ± 0

0.9611 ± 0

0.9574 ±0

0.9507 ± 0

0.9613 ±0

XGBoost trained on calibrated

probs using IR

0.96689 ± 0.0000

0.95959 ± 0.0000

0.9085 ± 0.0000

0.96682 ± 0.0000

0.9595 ± 0.0000

0.9119 ± 0.0000

XGBoost trained on calibrated

probs using temp scaling-BS

0.9653 ± 0

0.9573 ± 0

0.9073 ± 0

0.9653 ± 0

0.9572 ± 0

0.9109 ±0

XGBoost trained on calibrated

probs using temp scaling-LL

0.9653 ± 0

0.9591 ±0

0.9084 ±0

0.9652 ± 0

0.959 ± 1.110e-16

0.9119 ± 1.1105e-16

HistGrad trained on hard labels

0.9843 ± 0.0002

0.9696 ± 0.0016

0.9102 ± 0.0007

0.984 ± 0.00024

0.9696 ± 0.00164

0.91388 ± 0.0007

HistGrad trained on logits

0.9648 ± 0.00115

0.9579 ±0.0008

0.9568 ±0.00064

0.9648 ± 0.00114

0.9579 ± 0.00087

0.9573 ± 0.00062

HistGrad trained on calibrated

probs using IR

0.9743 ± 0.0001

0.9666 ± 0.0005

0.9102 ± 0.0004

0.9743 ± 0.0001

0.9666 ± 0.0005

0.9138 ± 0.0004

HistGrad trained on calibrated

probs using temp scaling-BS

0.97440 ± 0.0002

0.9667 ± 0.0009

0.91006 ± 0.0007

0.9743 ± 0.0002

0.9667 ± 0.0009

0.9137± 0.0007

HistGrad trained on calibrated

probs using temp scaling-LL

0.9738 ± 0.0001

0.966 ± 0.002

0.9107 ± 0.0006

0.9738 ± 0.0001

0.966 ± 0.0025

0.9142 ± 0.00056

Random Forest trained on

hard labels

0.9537±0.0015

0.9469±0.0018

0.8999±0.00168

0.9615±0.001267

0.953739±0.0015

0.904±0.0015

Random Forest trained on logits

0.9557±0.0007

0.9474±0.0016

0.9229±0.0063

0.9558±0.0007

0.9474±0.0016

0.9254±0.0059

Random Forest trained on calibrated

probs using IR

0.9688 ± 0.0005

0.9597 ± 0.0002

0.9069 ± 0.0013

0.9688 ± 0.0005

0.9597 ± 0.0001

0.9107 ± 0.0012

Random trained on calibrated

probs using temp scaling-BS

0.9688±0.0004

0.9597±0.0008

0.9070±0.0012

0.9687±0.0004

0.9597±0.0008

0.9108±0.0011

Random trained on calibrated

probs using temp scaling-LL

0.9688±0.0008

0.9593±0.0013

0.9074±0.0006

0.9688±0.0008

0.9593±0.0013

0.9112±0.0005

LightGBM trained on hard labels

0.9793 ± 0.0

0.9683 ± 0.0

0.9103 ± 0.0

0.9793 ± 0.0

0.9683 ± 0.0

0.9139 ± 0.0

LightGBM trained on logits

0.9648 ± 0.0

0.9555 ± 0.0

0.9626 ± 0.0

0.9648 ± 0.0

0.9554 ± 0.0

0.9629 ± 0.0

LightGBM trained on Calibrated

probs using IR

0.9746 ± 0.0000

0.9641 ± 0.0000

0.9101 ± 0.0000

0.9746 ± 0.0000

0.9641 ± 0.0000

0.9138 ± 0.0000

LightGBM trained on Calibrated

probs using temp scaling-BS

0.9742 ± 0.0

0.9656 ± 0.0

0.9104 ± 0.0

0.9742 ± 0.0

0.9655 ± 0.0

0.9140 ± 0.0

LightGBM trained on Calibrated

probs using temp scaling-LL

0.9742 ± 0.0

0.9656 ± 0.0

0.9112 ± 0.0

0.9742 ± 0.0

0.9656 ± 0.0

0.9148 ± 0.0

  1. Note: The logits represent the raw outputs of the teacher model. IR denotes Isotonic Regression, BS denotes Brier score reduction, LL denotes Log Loss reduction. Values in bold denote the performance of student models that learned well from the teacher model and outperformed their counterparts trained on hard labels. Std denotes the standard deviation