Table 15 Model performance-breast cancer dataset.
From: Distilling knowledge from graph neural networks trained on cell graphs to non-neural student models
Model | Acc_Train ± std | Acc_Val ± std | Acc_test ± std | F1_train ± std | F1_Val ± std | F1_test ± std |
|---|---|---|---|---|---|---|
Teacher Model | 0.9818 ± 0.0021 | 0.9466 ± 0.0013 | 0.9111 ± 0.0138 | 0.9818 ± 0.0021 | 0.9460 ± 0.0013 | 0.9059 ± 0.0159 |
ExtraTrees trained on hard labels | 0.9448 ±0.0020 | 0.9447 ±0.001 | 0.90392 ± 0.007 | 0.9449 ± 0.0019 | 0.94487 ± 0.0011 | 0.90752 ±0.006 |
ExtraTrees trained on logits | 0.95027 ± 0.0031 | 0.9438 ± 0.00533 | 0.95774064 ± 0.00344 | 0.95031 ± 0.0031 | 0.94384 ± 0.0053 | 0.95788 ± 0.00344 |
ExtraTrees trained on Calibrated probs using IR | 0.9512 ± 0.0025 | 0.94827 ± 0.0061 | 0.9584 ± 0.0037 | 0.9513 ± 0.0026 | 0.9483 ± 0.0061 | 0.9587 ± 0.0037 |
ExtraTrees trained on Calibrated probs using temp scaling-BS | 0.95000 ± 0.0030 | 0.9464 ± 0.004519 | 0.95623 ± 0.003135 | 0.9500 ± 0.0030 | 0.94645 ± 0.0045 | 0.9565 ± 0.0032 |
ExtraTrees trained on Calibrated probs using temp scaling-LL | 0.95051 ± 0.002 | 0.94643 ± 0.0041 | 0.95751 ± 0.0023 | 0.950 ± 0.0027 | 0.9464 ± 0.00422 | 0.95777 ± 0.0024 |
XGBoost trained on hard labels | 0.9683 ± 0 | 0.9614 ± 1.11e-16 | 0.90708 ± 0 | 0.9682 ± 0 | 0.9613 ± 1.11e-16 | 0.9105 ± 0 |
XGBoost trained on logits | 0.9575 ± 0 | 0.9508 ± 0 | 0.9611 ± 0 | 0.9574 ±0 | 0.9507 ± 0 | 0.9613 ±0 |
XGBoost trained on calibrated probs using IR | 0.96689 ± 0.0000 | 0.95959 ± 0.0000 | 0.9085 ± 0.0000 | 0.96682 ± 0.0000 | 0.9595 ± 0.0000 | 0.9119 ± 0.0000 |
XGBoost trained on calibrated probs using temp scaling-BS | 0.9653 ± 0 | 0.9573 ± 0 | 0.9073 ± 0 | 0.9653 ± 0 | 0.9572 ± 0 | 0.9109 ±0 |
XGBoost trained on calibrated probs using temp scaling-LL | 0.9653 ± 0 | 0.9591 ±0 | 0.9084 ±0 | 0.9652 ± 0 | 0.959 ± 1.110e-16 | 0.9119 ± 1.1105e-16 |
HistGrad trained on hard labels | 0.9843 ± 0.0002 | 0.9696 ± 0.0016 | 0.9102 ± 0.0007 | 0.984 ± 0.00024 | 0.9696 ± 0.00164 | 0.91388 ± 0.0007 |
HistGrad trained on logits | 0.9648 ± 0.00115 | 0.9579 ±0.0008 | 0.9568 ±0.00064 | 0.9648 ± 0.00114 | 0.9579 ± 0.00087 | 0.9573 ± 0.00062 |
HistGrad trained on calibrated probs using IR | 0.9743 ± 0.0001 | 0.9666 ± 0.0005 | 0.9102 ± 0.0004 | 0.9743 ± 0.0001 | 0.9666 ± 0.0005 | 0.9138 ± 0.0004 |
HistGrad trained on calibrated probs using temp scaling-BS | 0.97440 ± 0.0002 | 0.9667 ± 0.0009 | 0.91006 ± 0.0007 | 0.9743 ± 0.0002 | 0.9667 ± 0.0009 | 0.9137± 0.0007 |
HistGrad trained on calibrated probs using temp scaling-LL | 0.9738 ± 0.0001 | 0.966 ± 0.002 | 0.9107 ± 0.0006 | 0.9738 ± 0.0001 | 0.966 ± 0.0025 | 0.9142 ± 0.00056 |
Random Forest trained on hard labels | 0.9537±0.0015 | 0.9469±0.0018 | 0.8999±0.00168 | 0.9615±0.001267 | 0.953739±0.0015 | 0.904±0.0015 |
Random Forest trained on logits | 0.9557±0.0007 | 0.9474±0.0016 | 0.9229±0.0063 | 0.9558±0.0007 | 0.9474±0.0016 | 0.9254±0.0059 |
Random Forest trained on calibrated probs using IR | 0.9688 ± 0.0005 | 0.9597 ± 0.0002 | 0.9069 ± 0.0013 | 0.9688 ± 0.0005 | 0.9597 ± 0.0001 | 0.9107 ± 0.0012 |
Random trained on calibrated probs using temp scaling-BS | 0.9688±0.0004 | 0.9597±0.0008 | 0.9070±0.0012 | 0.9687±0.0004 | 0.9597±0.0008 | 0.9108±0.0011 |
Random trained on calibrated probs using temp scaling-LL | 0.9688±0.0008 | 0.9593±0.0013 | 0.9074±0.0006 | 0.9688±0.0008 | 0.9593±0.0013 | 0.9112±0.0005 |
LightGBM trained on hard labels | 0.9793 ± 0.0 | 0.9683 ± 0.0 | 0.9103 ± 0.0 | 0.9793 ± 0.0 | 0.9683 ± 0.0 | 0.9139 ± 0.0 |
LightGBM trained on logits | 0.9648 ± 0.0 | 0.9555 ± 0.0 | 0.9626 ± 0.0 | 0.9648 ± 0.0 | 0.9554 ± 0.0 | 0.9629 ± 0.0 |
LightGBM trained on Calibrated probs using IR | 0.9746 ± 0.0000 | 0.9641 ± 0.0000 | 0.9101 ± 0.0000 | 0.9746 ± 0.0000 | 0.9641 ± 0.0000 | 0.9138 ± 0.0000 |
LightGBM trained on Calibrated probs using temp scaling-BS | 0.9742 ± 0.0 | 0.9656 ± 0.0 | 0.9104 ± 0.0 | 0.9742 ± 0.0 | 0.9655 ± 0.0 | 0.9140 ± 0.0 |
LightGBM trained on Calibrated probs using temp scaling-LL | 0.9742 ± 0.0 | 0.9656 ± 0.0 | 0.9112 ± 0.0 | 0.9742 ± 0.0 | 0.9656 ± 0.0 | 0.9148 ± 0.0 |