Table 23 Model performance-CoauthorPhysics dataset.
From: Distilling knowledge from graph neural networks trained on cell graphs to non-neural student models
Model | Acc_Train ± std | Acc_Val ± std | Acc_test ± std | F1_train ± std | F1_Val ± std | F1_test ± std |
|---|---|---|---|---|---|---|
Teacher Model | 0.9982±0.0007 | 0.9707±0.0012 | 0.9685±0.0012 | 0.9982±0.0007 | 0.9707±0.0012 | 0.9685±0.0012 |
ExtraTrees trained on hard labels | 0.8368 ± 0.0046 | 0.8337 ± 0.0024 | 0.8301 ± 0.0023 | 0.8226 ± 0.0061 | 0.8202 ± 0.0035 | 0.8126 ± 0.0028 |
ExtraTrees trained on logits | 0.8873 ± 0.0037 | 0.8811 ± 0.0032 | 0.8817 ± 0.0063 | 0.8823 ± 0.0049 | 0.8756 ± 0.0044 | 0.8758 ± 0.0078 |
ExtraTrees trained on Calibrated logits using IR | 0.9229 ± 0.0011 | 0.9145 ± 0.0031 | 0.9072 ± 0.0037 | 0.9210 ± 0.0012 | 0.9122 ± 0.0032 | 0.9047 ± 0.0039 |
ExtraTrees trained on Calibrated logits using temp scaling-BS | 0.9229 ± 0.0019 | 0.9127 ± 0.0032 | 0.9102 ± 0.0029 | 0.9210 ± 0.0020 | 0.9104 ± 0.0033 | 0.9077 ± 0.0030 |
ExtraTrees trained on Calibrated logits using temp scaling-LL | 0.9233 ± 0.0017 | 0.9130 ± 0.0037 | 0.9102 ± 0.0032 | 0.9215 ± 0.0018 | 0.9107 ± 0.0038 | 0.9077 ± 0.0034 |
XGBoost trained on hard labels | 0.9194 ± 0.0000 | 0.8957 ± 0.0000 | 0.8959 ± 0.0000 | 0.9174 ± 0.0000 | 0.8928 ± 0.0000 | 0.8928 ± 0.0000 |
XGBoost trained on logits | 0.8675 ± 0.0000 | 0.8543 ± 0.0000 | 0.8544 ± 0.0000 | 0.8580 ± 0.0000 | 0.8434 ± 0.0000 | 0.8431 ± 0.0000 |
XGBoost trained on calibrated probs using IR | 0.9166 ± 0.0000 | 0.8935 ± 0.0000 | 0.8924 ± 0.0000 | 0.9141 ± 0.0000 | 0.8898 ± 0.0000 | 0.8885 ± 0.0000 |
XGBoost trained on calibrated probs using temp scaling-BS | 0.9178 ± 0.0000 | 0.8946 ± 0.0000 | 0.8976 ± 0.0000 | 0.9154 ± 0.0000 | 0.8908 ± 0.0000 | 0.8940 ± 0.0000 |
XGBoost trained on calibrated probs using temp scaling-LL | 0.9167 ± 0.0000 | 0.8941 ± 0.0000 | 0.8944 ± 0.0000 | 0.9142 ± 0.0000 | 0.8904 ± 0.0000 | 0.8908 ± 0.0000 |
HistGrad trained on hard labels | 0.9549 ± 0.0002 | 0.9296 ± 0.0010 | 0.9273 ± 0.0013 | 0.9546 ± 0.0002 | 0.9287 ± 0.0011 | 0.9263 ± 0.0013 |
HistGrad trained on logits | 0.9085 ± 0.0004 | 0.8954 ± 0.0025 | 0.8954 ± 0.0015 | 0.9053 ± 0.0004 | 0.8914 ± 0.0025 | 0.8912 ± 0.0015 |
HistGrad trained on calibrated probs using IR | 0.9335 ± 0.0016 | 0.9164 ± 0.0042 | 0.9126 ± 0.0033 | 0.9321 ± 0.0017 | 0.9143 ± 0.0044 | 0.9103 ± 0.0036 |
HistGrad trained on calibrated probs using temp scaling-BS | 0.9341 ± 0.0015 | 0.9171 ± 0.0017 | 0.9144 ± 0.0029 | 0.9327 ± 0.0015 | 0.9151 ± 0.0018 | 0.9122 ± 0.0032 |
HistGrad trained on calibrated probs using temp scaling-LL | 0.9333 ± 0.0028 | 0.9162 ± 0.0045 | 0.9139 ± 0.0033 | 0.9319 ± 0.0030 | 0.9141 ± 0.0048 | 0.9117 ± 0.0036 |
Random Forest trained on hard labels | 0.8243 ± 0.0014 | 0.8124 ± 0.0018 | 0.8133 ± 0.0006 | 0.8150 ± 0.0019 | 0.8027 ± 0.0027 | 0.8035 ± 0.0011 |
Random Forest trained on logits | 0.8782 ± 0.0015 | 0.8668 ± 0.0032 | 0.8684 ± 0.0010 | 0.8736 ± 0.0017 | 0.8613 ± 0.0033 | 0.8631 ± 0.0011 |
Random Forest trained on calibrated probs using IR | 0.9138 ± 0.0015 | 0.8942 ± 0.0007 | 0.8948 ± 0.0009 | 0.9117 ± 0.0017 | 0.8912 ± 0.0008 | 0.8919 ± 0.0010 |
Random trained on calibrated probs using temp scaling-BS | 0.9133 ± 0.0019 | 0.8941 ± 0.0004 | 0.8934 ± 0.0016 | 0.9111 ± 0.0021 | 0.8910 ± 0.0006 | 0.8903 ± 0.0018 |
Random trained on calibrated probs using temp scaling-LL | 0.9133 ± 0.0020 | 0.8943 ± 0.0009 | 0.8936 ± 0.0025 | 0.9112 ± 0.0022 | 0.8912 ± 0.0011 | 0.8905 ± 0.0027 |
LightGBM trained on hard labels | 0.9537 ± 0.0000 | 0.9269 ± 0.0000 | 0.9318 ± 0.0000 | 0.9533 ± 0.0000 | 0.9258 ± 0.0000 | 0.9309 ± 0.0000 |
LightGBM trained on logits | 0.9120 ± 0.0000 | 0.8977 ± 0.0000 | 0.8979 ± 0.0000 | 0.9089 ± 0.0000 | 0.8939 ± 0.0000 | 0.8940 ± 0.0000 |
LightGBM trained on Calibrated probs using IR | 0.9377 ± 0.0000 | 0.9214 ± 0.0000 | 0.9176 ± 0.0000 | 0.9365 ± 0.0000 | 0.9196 ± 0.0000 | 0.9156 ± 0.0000 |
LightGBM trained on Calibrated probs using temp scaling-BS | 0.9363 ± 0.0000 | 0.9186 ± 0.0000 | 0.9139 ± 0.0000 | 0.9350 ± 0.0000 | 0.9167 ± 0.0000 | 0.9116 ± 0.0000 |
LightGBM trained on Calibrated probs using temp scaling-LL | 0.9373 ± 0.0000 | 0.9198 ± 0.0000 | 0.9165 ± 0.0000 | 0.9361 ± 0.0000 | 0.9179 ± 0.0000 | 0.9144 ± 0. |