Table 26 Model performance-CoauthorCS dataset.
From: Distilling knowledge from graph neural networks trained on cell graphs to non-neural student models
Model | Acc_Train ± std | Acc_Val ± std | Acc_test ± std | F1_train ± std | F1_Val ± std | F1_test ± std |
|---|---|---|---|---|---|---|
Teacher Model | 0.9982±0.0005 | 0.9392±0.0006 | 0.9406±0.0039 | 0.9982±0.0005 | 0.9393±0.0007 | 0.9406±0.0040 |
XGBoost trained on hard labels | 0.9591 ± 0.0000 | 0.8857 ± 0.0000 | 0.8664 ± 0.0000 | 0.9593 ± 0.0000 | 0.8865 ± 0.0000 | 0.8684 ± 0.0000 |
XGBoost trained on logits | 0.8039 ± 0.0000 | 0.7657 ± 0.0000 | 0.7650 ± 0.0000 | 0.8028 ± 0.0000 | 0.7627 ± 0.0000 | 0.7633 ± 0.0000 |
XGBoost trained on calibrated probs using IR | 0.9524 ± 0.0000 | 0.8837 ± 0.0000 | 0.8729 ± 0.0000 | 0.9521 ± 0.0000 | 0.8800 ± 0.0000 | 0.8710 ± 0.0000 |
XGBoost trained on calibrated probs using temp scaling-BS | 0.9523 ± 0.0000 | 0.8843 ± 0.0000 | 0.8746 ± 0.0000 | 0.9520 ± 0.0000 | 0.8813 ± 0.0000 | 0.8728 ± 0.0000 |
ExtraTrees trained on hard labels | 0.7617± 0.0063 | 0.7504 ±0.003 | 0.7470 ± 0.010 | 0.76490 ± 0.0064 | 0.7530 ±0.0027 | 0.7511± 0.01022 |
ExtraTrees trained on logits | 0.8102 ± 0.0029 | 0.7918 ± 0.0054 | 0.7819 ± 0.0066 | 0.8063 ± 0.0018 | 0.7849 ± 0.0041 | 0.7811 ± 0.0058 |
ExtraTrees trained on Calibrated probs using IR | 0.9439 ± 0.0008 | 0.8892 ± 0.0011 | 0.8805 ± 0.0033 | 0.9435 ± 0.0009 | 0.8860 ± 0.0013 | 0.8788 ± 0.0035 |
ExtraTrees trained on Calibrated probs using temp scaling-BS | 0.9448 ± 0.0003 | 0.8904 ± 0.0019 | 0.8813 ± 0.0053 | 0.9444 ± 0.0003 | 0.8872 ± 0.0017 | 0.8793 ± 0.0050 |
HistGrad trained on hard labels | 0.9758 ± 0.0005 | 0.8835 ± 0.0023 | 0.8771 ± 0.0011 | 0.9759 ± 0.0006 | 0.8844 ± 0.0026 | 0.8781 ± 0.0011 |
HistGrad trained on logits | 0.8455 ± 0.0028 | 0.8144 ± 0.0059 | 0.7995 ± 0.0032 | 0.8448 ± 0.0027 | 0.8111 ± 0.0051 | 0.7997 ± 0.0037 |
HistGrad trained on calibrated probs using IR | 0.9406 ± 0.0009 | 0.8961 ± 0.0015 | 0.8916 ± 0.0015 | 0.9399 ± 0.0010 | 0.8935 ± 0.0015 | 0.8905 ± 0.0016 |
HistGrad trained on calibrated probs using temp scaling-BS | 0.9403 ± 0.0012 | 0.8969 ± 0.0037 | 0.8900 ± 0.0019 | 0.9396 ± 0.0012 | 0.8946 ± 0.0038 | 0.8887 ± 0.0016 |
Random Forest trained on hard labels | 0.6541 ± 0.0049 | 0.6326 ± 0.0033 | 0.6337 ± 0.0089 | 0.6647± 0.0059 | 0.6422 ± 0.004720 | 0.64595 ± 0.0105 |
Random Forest trained on logits | 0.7938 ± 0.0043 | 0.7724 ± 0.0027 | 0.7581 ± 0.0048 | 0.7939 ± 0.0044 | 0.7716 ± 0.0028 | 0.7607 ± 0.0000 |
Random Forest trained on calibrated probs using IR | 0.9369 ± 0.0009 | 0.8759 ± 0.0020 | 0.8680 ± 0.0020 | 0.9366 ± 0.0009 | 0.8734 ± 0.0021 | 0.8659 ± 0.0020 |
Random trained on calibrated probs using temp scaling-BS | 0.9374 ± 0.0006 | 0.8777 ± 0.0025 | 0.8675 ± 0.0008 | 0.9372 ± 0.0007 | 0.8752 ± 0.0028 | 0.8657 ± 0.0006 |
LightGBM trained on hard labels | 0.9861 ± 0.0000 | 0.8920 ± 0.0000 | 0.8768 ± 0.0000 | 0.9861 ± 0.0000 | 0.8922 ± 0.0000 | 0.8772 ± 0.0000 |
LightGBM trained on logits | 0.8578 ± 0.0000 | 0.8271 ± 0.0000 | 0.8086 ± 0.0000 | 0.8564 ± 0.0000 | 0.8240 ± 0.0000 | 0.8076 ± 0.0000 |
LightGBM trained on Calibrated probs using IR | 0.9497 ± 0.0000 | 0.9007 ± 0.0000 | 0.8909 ± 0.0000 | 0.9493 ± 0.0000 | 0.8987 ± 0.0000 | 0.8896 ± 0.0000 |
LightGBM trained on Calibrated probs using temp scaling-BS | 0.9473 ± 0.0000 | 0.9045 ± 0.0000 | 0.8980 ± 0.0000 | 0.9467 ± 0.0000 | 0.9027 ± 0.0000 | 0.8970 ± 0.0000 |