Table 5 Comparative evaluation of machine learning model Performance.

From: Study on the driving mechanisms of spatiotemporal nonstationarity of vegetation dynamics in Heilongjiang Province

Season

Model

Train_R2

Train_RMSE

Train_MAE

Test_R2

Test_RMSE

Test_MAE

Annual

Random Forest

0.9459

0.0463

0.0325

0.9031

0.0627

0.0438

Annual

Gradient Boosting

0.9263

0.0541

0.0389

0.8998

0.0637

0.0449

Annual

CatBoost

0.9127

0.0589

0.0421

0.8985

0.0641

0.0455

Spring

Random Forest

0.9424

0.0501

0.0355

0.9024

0.0659

0.0464

Spring

Gradient Boosting

0.9188

0.0594

0.0431

0.8981

0.0673

0.0482

Spring

CatBoost

0.9062

0.0639

0.0463

0.8966

0.0678

0.0488

Summer

Random Forest

0.9436

0.0483

0.0341

0.9008

0.0653

0.0451

Summer

Gradient Boosting

0.9234

0.0563

0.0406

0.8988

0.0661

0.0458

Summer

CatBoost

0.9139

0.0596

0.0431

0.8962

0.0669

0.0462

Autumn

Random Forest

0.9401

0.0515

0.0367

0.9018

0.0701

0.0498

Autumn

CatBoost

0.9018

0.0659

0.0484

0.8861

0.0718

0.0518

Autumn

Gradient Boosting

0.9118

0.0624

0.0461

0.8831

0.0727

0.0523

Winter

Random Forest

0.9352

0.0614

0.0402

0.8974

0.0811

0.0529

Winter

Gradient Boosting

0.9058

0.0741

0.0495

0.8788

0.0841

0.0552

Winter

CatBoost

0.8904

0.0799

0.0536

0.8779

0.0845

0.0561