Table 5 Comparative evaluation of machine learning model Performance.
Season | Model | Train_R2 | Train_RMSE | Train_MAE | Test_R2 | Test_RMSE | Test_MAE |
|---|---|---|---|---|---|---|---|
Annual | Random Forest | 0.9459 | 0.0463 | 0.0325 | 0.9031 | 0.0627 | 0.0438 |
Annual | Gradient Boosting | 0.9263 | 0.0541 | 0.0389 | 0.8998 | 0.0637 | 0.0449 |
Annual | CatBoost | 0.9127 | 0.0589 | 0.0421 | 0.8985 | 0.0641 | 0.0455 |
Spring | Random Forest | 0.9424 | 0.0501 | 0.0355 | 0.9024 | 0.0659 | 0.0464 |
Spring | Gradient Boosting | 0.9188 | 0.0594 | 0.0431 | 0.8981 | 0.0673 | 0.0482 |
Spring | CatBoost | 0.9062 | 0.0639 | 0.0463 | 0.8966 | 0.0678 | 0.0488 |
Summer | Random Forest | 0.9436 | 0.0483 | 0.0341 | 0.9008 | 0.0653 | 0.0451 |
Summer | Gradient Boosting | 0.9234 | 0.0563 | 0.0406 | 0.8988 | 0.0661 | 0.0458 |
Summer | CatBoost | 0.9139 | 0.0596 | 0.0431 | 0.8962 | 0.0669 | 0.0462 |
Autumn | Random Forest | 0.9401 | 0.0515 | 0.0367 | 0.9018 | 0.0701 | 0.0498 |
Autumn | CatBoost | 0.9018 | 0.0659 | 0.0484 | 0.8861 | 0.0718 | 0.0518 |
Autumn | Gradient Boosting | 0.9118 | 0.0624 | 0.0461 | 0.8831 | 0.0727 | 0.0523 |
Winter | Random Forest | 0.9352 | 0.0614 | 0.0402 | 0.8974 | 0.0811 | 0.0529 |
Winter | Gradient Boosting | 0.9058 | 0.0741 | 0.0495 | 0.8788 | 0.0841 | 0.0552 |
Winter | CatBoost | 0.8904 | 0.0799 | 0.0536 | 0.8779 | 0.0845 | 0.0561 |