Table 9 Comparison of studies using the AI4PAIN database for three-class pain (No Pain, Low Pain, High Pain) classification settings.

From: A CrossMod-Transformer deep learning framework for multi-modal pain detection through EDA and ECG fusion

Reference

Modality

Validation

Method

Accuracy (%)

Gkikas et al.52

Video, fNIRS

Hold-out

Transformer

46.67

Prajod et al.53

Video

Hold-out

2D CNN

49.00

Khan et al.54

fNIRS

Hold-out

Ensemble Learning

53.66

Nguyen et al.55

Video

Hold-out

Transformer

55.00

Vianto et al.56

Video, fNIRS

Hold-out

Hybrid CNN–Transformer

51.33

Gkikas et al.47

Video, fNIRS

Hold-out

Transformer

55.69

Bargshady et al.9

Video

Hold-out

Transformer

66.96

Fernandez-Rojas et al.35

EDA

Hold-out

Gaussian SVM

45.60

Fernandez-Rojas et al.35

BVP

Hold-out

Gaussian SVM

56.25

Fernandez-Rojas et al.35

EDA, BVP

Hold-out

Gaussian SVM

52.77

Our Approach

EDA, BVP

Hold-out

Crossmod-Transformer

75.83