Table 1 Selected mathematical modeling to demonstrate the drying process of Egyptian sweet marjoram leaves.

From: Comparative analysis of drying kinetics, diffusivity, and thermodynamic properties of hybrid solar and oven dryers for Egyptian sweet marjoram

No.

Model name

Model Equation*

Reference

1

Aghbashlo

\(\:MR=\text{exp}\left(-\frac{{k}_{1}t}{1+{k}_{2}t}\right)\)

75,76

2

Henderson - Pabis

\(\:MR=a\:\text{e}\text{x}\text{p}\left(-kt\right)\)

7779

3

Lewis (Newton)

\(\:\text{M}\text{R}=\text{e}\text{x}\text{p}\left(-\text{k}\text{t}\right)\)

77

4

Logarithmic (Asymptotic)

\(\:\text{M}\text{R}=\text{a}\text{*}\text{e}\text{x}\text{p}\left(-\text{k}\text{t}\right)+c\)

7779

5

Midilli

\(\:\text{M}\text{R}=\text{a}\text{*}\text{e}\text{x}\text{p}\left(-\text{k}{\text{t}}^{n}\right)+bt\)

7779

6

Modified Midilli II

\(\:\text{M}\text{R}=\text{a}\text{*}\text{e}\text{x}\text{p}\left(-\text{k}{\text{t}}^{n}\right)+b\)

80

7

Modified Page

\(\:\text{M}\text{R}=\text{e}\text{x}\text{p}\left(-{\left(\text{k}\text{t}\right)}^{\text{n}}\right)\)

7779

8

Page

\(\:\text{M}\text{R}=\text{e}\text{x}\text{p}\left(-\text{k}{\text{t}}^{\text{n}}\right)\)

77,78,79

9

Wang-Sigh

\(\:MR=1+bt+a{t}^{2}\)

7779

10

Weibullian

\(\:\text{M}\text{R}=\text{e}\text{x}\text{p}\left(-{\left(\frac{t}{\alpha\:}\right)}^{\beta\:}\right)\)

80,81

11

Weibullian I

\(\:\text{M}\text{R}={10}^{-{\left(\frac{t}{\delta\:}\right)}^{n}}\)

80,81

  1. * MR is the moisture ratio, dimensionless; k1, k2 and k are the drying constants, h− 1; t is the drying time, h; a, b,c, n,ɤ, β and δ are the models constants, dimensionless.