Table 1 Selected mathematical modeling to demonstrate the drying process of Egyptian sweet marjoram leaves.
No. | Model name | Model Equation* | Reference |
|---|---|---|---|
1 | Aghbashlo | \(\:MR=\text{exp}\left(-\frac{{k}_{1}t}{1+{k}_{2}t}\right)\) | |
2 | Henderson - Pabis | \(\:MR=a\:\text{e}\text{x}\text{p}\left(-kt\right)\) | |
3 | Lewis (Newton) | \(\:\text{M}\text{R}=\text{e}\text{x}\text{p}\left(-\text{k}\text{t}\right)\) | |
4 | Logarithmic (Asymptotic) | \(\:\text{M}\text{R}=\text{a}\text{*}\text{e}\text{x}\text{p}\left(-\text{k}\text{t}\right)+c\) | |
5 | Midilli | \(\:\text{M}\text{R}=\text{a}\text{*}\text{e}\text{x}\text{p}\left(-\text{k}{\text{t}}^{n}\right)+bt\) | |
6 | Modified Midilli II | \(\:\text{M}\text{R}=\text{a}\text{*}\text{e}\text{x}\text{p}\left(-\text{k}{\text{t}}^{n}\right)+b\) | |
7 | Modified Page | \(\:\text{M}\text{R}=\text{e}\text{x}\text{p}\left(-{\left(\text{k}\text{t}\right)}^{\text{n}}\right)\) | |
8 | Page | \(\:\text{M}\text{R}=\text{e}\text{x}\text{p}\left(-\text{k}{\text{t}}^{\text{n}}\right)\) | |
9 | Wang-Sigh | \(\:MR=1+bt+a{t}^{2}\) | |
10 | Weibullian | \(\:\text{M}\text{R}=\text{e}\text{x}\text{p}\left(-{\left(\frac{t}{\alpha\:}\right)}^{\beta\:}\right)\) | |
11 | Weibullian I | \(\:\text{M}\text{R}={10}^{-{\left(\frac{t}{\delta\:}\right)}^{n}}\) |