Table 10 Results of deep learning classifiers using hybrid features.

From: Improved railway track faults detection using Mel-frequency cepstral coefficient and constant-Q transform features

MFCC

Model

Class

Precision

Recall

F1 Score

Model

Class

Precision

Recall

F1 Score

LSTM

0

0.33

1.00

0.50

CNN

0

0.96

0.86

0.81

1

0.00

0.00

0.00

1

94.0

1.00

97.0

2

0.00

0.00

0.00

2

0.89

0.92

0.91

Micro avg.

0.11

0.33

0.17

Micro avg.

0.93

0.93

0.93

Weighted avg.

0.11

0.33

0.16

Weighted avg.

0.93

0.93

0.93

Accuracy

0.33

Accuracy

0.93

RNN

0

0.57

0.78

0.66

GRU

0

0.82

0.90

0.86

1

0.96

1.00

0.98

1

0.96

1.00

0.98

2

0.69

0.42

0.52

2

0.89

0.77

0.83

Micro avg.

0.74

0.73

0.72

Micro avg.

0.89

0.89

0.89

Weighted avg.

0.73

0.72

0.71

Weighted avg.

0.89

0.89

0.89

Accuracy

0.72

Accuracy

0.89

CQT

Model

Class

Precision

Recall

F1 Score

Model

Class

Precision

Recall

F1 Score

LSTM

0

0.36

1.00

0.53

CNN

0

0.90

0.83

0.86

1

0.00

0.00

0.00

1

94.0

1.00

97.0

2

0.00

0.00

0.00

2

0.84

0.87

0.86

Micro avg.

0.12

0.33

0.18

Micro avg.

0.89

0.90

0.90

Weighted avg.

0.16

0.36

0.19

Weighted avg.

0.89

0.89

0.89

Accuracy

0.36

Accuracy

0.89

RNN

0

0.53

0.46

0.49

GRU

0

0.83

0.88

0.85

1

0.87

0.91

0.89

1

0.98

1.00

0.99

2

0.51

0.57

0.54

2

0.86

0.79

0.82

Micro avg.

0.64

0.64

0.64

Micro avg.

0.89

0.89

0.89

Weighted avg.

0.62

0.63

0.63

Weighted avg.

0.88

0.88

0.88

Accuracy

0.63

Accuracy

0.88