Table 12 Results of deep learning models for hybrid MFCC+CQT with CTGAN.

From: Improved railway track faults detection using Mel-frequency cepstral coefficient and constant-Q transform features

MFCC+CQT

Model

Class

Precision

Recall

F1 Score

Model

Class

Precision

Recall

F1 Score

LSTM

0

0.36

1.00

0.53

CNN

0

0.90

0.83

0.86

1

0.00

0.00

0.00

1

94.0

1.00

97.0

2

0.00

0.00

0.00

2

0.84

0.87

0.86

Micro avg.

0.12

0.33

0.18

Micro avg.

0.89

0.90

0.90

Weighted avg.

0.13

0.36

0.19

Weighted avg.

0.89

0.89

0.89

Accuracy

0.36

Accuracy

0.89

RNN

0

0.53

0.46

0.49

GRU

0

0.83

0.88

0.85

1

0.87

0.91

0.89

1

0.98

1.00

0.99

2

0.51

0.57

0.54

2

0.86

0.79

0.82

Micro avg.

0.64

0.64

0.64

Micro avg.

0.89

0.89

0.89

Weighted avg.

0.62

0.63

0.63

Weighted avg.

0.88

0.88

0.88

Accuracy

0.63

Accuracy

0.88

MFCC+CQT+GAN

Model

Class

Precision

Recall

F1 Score

Model

Class

Precision

Recall

F1 Score

LSTM

0

0.40

1.00

0.57

CNN

0

1.00

1.00

1.00

1

0.00

0.00

0.00

1

1.00

1.00

1.00

2

0.00

0.00

0.00

2

1.00

1.00

1.00

Micro avg.

0.13

0.33

0.19

Micro avg.

1.00

1.00

1.00

Weighted avg.

0.16

0.40

0.22

Weighted avg.

1.00

1.00

1.00

Accuracy

0.40

Accuracy

1.00

RNN

0

0.72

0.72

0.72

GRU

0

0.99

1.00

1.00

1

1.00

1.00

1.00

1

1.00

1.00

1.00

2

0.62

0.61

0.62

2

0.99

0.99

0.99

Micro avg.

0.78

0.78

0.78

Micro avg.

1.00

1.00

1.00

Weighted avg.

0.78

0.78

0.78

Weighted avg.

1.00

1.00

1.00

Accuracy

0.78

Accuracy

1.00