Table 13 K-fold cross-validation results with MFCC, CQT features using machine learning models.
Features | DT | SVC | KNN | LR | NB | RF | Voting (Hard) | Voting (Soft) |
|---|---|---|---|---|---|---|---|---|
MFCC | 0.93(± 0.08) | 0.99 (± 0.02) | 0.85 (± 0.08) | 0.96 (± 0.05) | 0.99 (± 0.02) | 0.98 (± 0.02) | - | - |
CQT | 0.92(± 0.05) | 0.94 (± 0.04) | 0.80 (± 0.10) | 0.90 (± 0.05) | 0.72 (± 0.15) | 0.95 (± 0.07) | 0.94 (± 0.04) | 0.94 (± 0.04) |
MFCC+CQT | 0.91(± 0.07) | 0.95 (± 0.05) | 0.83 (± 0.07) | 0.90 (± 0.04) | 0.48 (± 0.09) | 0.95 (± 0.04) | 0.94 (± 0.04) | 0.90 (± 0.05) |