Table 4 Results of machine learning classifiers using MFCC features.

From: Improved railway track faults detection using Mel-frequency cepstral coefficient and constant-Q transform features

Model

Class

Precision

Recall

F1 Score

Model

Class

Precision

Recall

F1 Score

DT

0

0.96

0.92

0.94

LR

0

1.0

0.92

0.96

1

1.00

1.00

1.00

1

1.00

1.00

1.00

2

0.92

0.96

0.94

2

0.92

1.0

0.96

Micro avg.

0.96

0.96

0.96

Micro avg.

0.97

0.97

0.97

Weighted avg.

0.96

0.96

0.96

Weighted avg.

0.97

0.97

0.97

Accuracy

0.96

Accuracy

0.97

SVC

0

0.98

0.98

0.98

NB

0

0.63

0.81

0.71

1

1.00

1.00

1.00

1

1.00

1.00

1.00

2

0.98

0.98

0.98

2

0.74

0.53

0.62

Micro avg.

0.99

0.99

0.99

Micro avg.

0.79

0.78

0.78

Weighted avg.

0.99

0.99

0.99

Weighted avg.

0.79

0.78

0.77

Accuracy

0.99

Accuracy

0.78

KNN

0

0.78

0.79

0.78

RF

0

0.96

0.94

0.95

1

1.00

1.00

1.00

1

1.00

1.00

1.00

2

0.79

0.78

0.78

2

0.94

0.96

0.95

Micro avg.

0.86

0.86

0.86

Micro avg.

0.97

0.97

0.97

Weighted avg.

0.85

0.85

0.85

Weighted avg.

0.97

0.97

0.97

Accuracy

0.85

Accuracy

0.97

HardVoting

0

0.98

0.96

0.97

Soft Voting

0

0.98

0.96

0.97

1

1.00

1.00

1.00

1

1.00

1.00

1.00

2

0.96

0.98

0.97

2

0.96

0.98

0.97

Micro avg.

0.98

0.98

0.98

Micro avg.

0.98

0.98

0.98

Weighted avg.

0.98

0.98

0.98

Weighted avg.

0.98

0.98

0.98

Accuracy

0.98

Accuracy

0.98