Table 3 Evaluation metrics on training set ordered by increasing R² (Lower to higher Efficiency).

From: Comparative analysis of deep learning architectures in solar power prediction

Model

RMSE

MAE

MAPE

R²

Transformer

862.0321

745.9043

148581.6866

0.1551

LSTM

525.9054

418.8194

25620.8813

0.6855

GRU

486.6311

385.2489

24411.0665

0.7307

CNN

462.4756

345.9687

18104.5631

0.7568

InformerLite

423.7508

313.7759

30930.4242

0.7958

SimpleRNN

410.9217

315.5270

21515.0806

0.8080

TCN

378.1977

270.5365

11125.2028

0.8374

Autoencoder

341.0466

234.7443

13257.2408

0.8677