Table 4 Evaluation metrics on validation set ordered by increasing R² (Lower to higher Efficiency).

From: Comparative analysis of deep learning architectures in solar power prediction

Model

RMSE

MAE

MAPE

R²

Transformer

864.4696

755.1639

101714.3527

0.1712

LSTM

539.8949

427.3706

33203.2621

0.6767

GRU

513.7007

394.8666

33446.1366

0.7073

CNN

495.7869

370.4419

16653.6720

0.7274

InformerLite

480.1903

351.7369

39847.8133

0.7443

SimpleRNN

472.0302

355.3144

21852.0857

0.7529

TCN

439.9661

300.8601

15749.0408

0.7853

Autoencoder

427.0279

285.8551

6525.7144

0.7978