Table 6 Comparison of the proposed model with state-of-the-art methods. The performance is evaluated using mean dice (mDice) and mean intersection over union (mIoU) scores across five benchmark datasets.

From: Bilateral collaborative streams with multi-modal attention network for accurate polyp segmentation

Models

Venue

Endoscene

ClinicDB

ColonDB

ETIS

Kvasir-SEG

mDice

mIoU

mDice

mIoU

mDice

mIoU

mDice

mIoU

mDice

mIoU

UNet18

MICCAI 2015

0.710

0.627

0.823

0.755

0.504

0.436

0.398

0.335

0.818

0.746

UNet++19

IEEE TMI 2018

0.707

0.624

0.794

0.729

0.482

0.408

0.401

0.344

0.821

0.743

PraNet27

MICCAI 2020

0.871

0.797

0.899

0.849

0.712

0.640

0.628

0.567

0.898

0.840

ACSNet48

MICCAI 2020

0.863

0.787

0.882

0.826

0.716

0.649

0.578

0.509

0.898

0.838

UACANet-S49

ACMMM 2021

0.902

0.837

0.916

0.870

0.783

0.704

0.694

0.615

0.905

0.852

Polyp-PVT30

arXiv 2021

0.900

0.833

0.937

0.889

0.808

0.727

0.787

0.706

0.917

0.864

BDG-Net50

Med. Imaging 2022

0.897

0.828

0.909

0.859

0.792

0.719

0.764

0.685

0.904

0.853

CASCADE52

WACV 2023

0.898

0.833

0.923

0.878

0.809

0.728

0.808

0.735

0.926

0.876

MEGANet53

WACV 2024

0.887

0.818

0.930

0.885

0.781

0.706

0.789

0.709

0.911

0.859

EMCAD-B254

CVPR 2024

0.885

0.812

0.929

0.881

0.819

0.736

0.794

0.717

0.924

0.878

MedSAM55

Nature Com 2024

0.870

0.798

0.867

0.803

0.734

0.651

0.687

0.604

0.862

0.795

SAM2-UNet56

arXiv 2024

0.894

0.827

0.907

0.856

0.808

0.730

0.796

0.723

0.928

0.879

BiCoMA (ours)

Scientific Reports

0.908

0.841

0.941

0.899

0.821

0.744

0.810

0.728

0.929

0.883