Table 6 Comparison of the proposed model with state-of-the-art methods. The performance is evaluated using mean dice (mDice) and mean intersection over union (mIoU) scores across five benchmark datasets.
From: Bilateral collaborative streams with multi-modal attention network for accurate polyp segmentation
Models | Venue | Endoscene | ClinicDB | ColonDB | ETIS | Kvasir-SEG | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
mDice | mIoU | mDice | mIoU | mDice | mIoU | mDice | mIoU | mDice | mIoU | ||
UNet18 | MICCAI 2015 | 0.710 | 0.627 | 0.823 | 0.755 | 0.504 | 0.436 | 0.398 | 0.335 | 0.818 | 0.746 |
UNet++19 | IEEE TMI 2018 | 0.707 | 0.624 | 0.794 | 0.729 | 0.482 | 0.408 | 0.401 | 0.344 | 0.821 | 0.743 |
PraNet27 | MICCAI 2020 | 0.871 | 0.797 | 0.899 | 0.849 | 0.712 | 0.640 | 0.628 | 0.567 | 0.898 | 0.840 |
ACSNet48 | MICCAI 2020 | 0.863 | 0.787 | 0.882 | 0.826 | 0.716 | 0.649 | 0.578 | 0.509 | 0.898 | 0.838 |
UACANet-S49 | ACMMM 2021 | 0.902 | 0.837 | 0.916 | 0.870 | 0.783 | 0.704 | 0.694 | 0.615 | 0.905 | 0.852 |
Polyp-PVT30 | arXiv 2021 | 0.900 | 0.833 | 0.937 | 0.889 | 0.808 | 0.727 | 0.787 | 0.706 | 0.917 | 0.864 |
BDG-Net50 | Med. Imaging 2022 | 0.897 | 0.828 | 0.909 | 0.859 | 0.792 | 0.719 | 0.764 | 0.685 | 0.904 | 0.853 |
CASCADE52 | WACV 2023 | 0.898 | 0.833 | 0.923 | 0.878 | 0.809 | 0.728 | 0.808 | 0.735 | 0.926 | 0.876 |
MEGANet53 | WACV 2024 | 0.887 | 0.818 | 0.930 | 0.885 | 0.781 | 0.706 | 0.789 | 0.709 | 0.911 | 0.859 |
EMCAD-B254 | CVPR 2024 | 0.885 | 0.812 | 0.929 | 0.881 | 0.819 | 0.736 | 0.794 | 0.717 | 0.924 | 0.878 |
MedSAM55 | Nature Com 2024 | 0.870 | 0.798 | 0.867 | 0.803 | 0.734 | 0.651 | 0.687 | 0.604 | 0.862 | 0.795 |
SAM2-UNet56 | arXiv 2024 | 0.894 | 0.827 | 0.907 | 0.856 | 0.808 | 0.730 | 0.796 | 0.723 | 0.928 | 0.879 |
BiCoMA (ours) | Scientific Reports | 0.908 | 0.841 | 0.941 | 0.899 | 0.821 | 0.744 | 0.810 | 0.728 | 0.929 | 0.883 |